

UMWELT PRÜF- UND ÜBERWACHUNGSSTELLE

Inspektionsbericht

des oberösterreichischen Luftmessnetzes

Jahresbericht 2021

Inspektionsbereich: Luftgüteüberwachung

Jahresbericht 2021 der Luftgüteüberwachung in Oberösterreich Inspektionsbericht

INSPEKTIONSSTELLE: Umwelt Prüf- und Überwachungsstelle

des Landes Oberösterreich

Direktion Umwelt und Wasserwirtschaft

Abteilung Umweltschutz

Inspektionsbereich: Luftgüteüberwachung

4021 Linz • Goethestraße 86 Tel.: (+43 732) 7720 - 136 43

AUFTRAGGEBER/IN: Der Landeshauptmann für den Vollzug von Bundesgesetzen.

Die Landesregierung für den Vollzug von Landesgesetzen, vertreten

durch das Amt der Oö. Landesregierung.

AUSSTELLUNGSDATUM: 19. Juli 2022

FÜR DIE INSPEKTIONSSTELLE

ALS ZEICHNUNGSBERECHTIGTE:

Dipl.-Ing. Regina Pürmayr

Hinweise:

Die Inspektionsergebisse beziehen sich ausschließlich auf die Inspektionsgegenstände. Die Verwendung einzelner Daten ohne Berücksichtigung des Gesamtzusammenhanges kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Inspektionsberichtes ist deshalb ohne Zustimmung der Inspektionsstelle nicht gestattet. Die Daten können anonymisiert von der Inspektionsstelle für statistische Zwecke verarbeitet werden.

Die in diesem Bericht verwendeten Daten sind endkontrolliert. Außer den eigenen Messwerten wurden zur Beurteilung der Messergebnisse auch Messwerte der Stationen des Umweltbundesamts sowie Wetterdaten der Zentralanstalt für Meteorologie herangezogen. In den Anhängen sind auch vorläufige Messwerte anderer Bundesländer zitiert. Bei der Wiedergabe wird um Quellenangabe gebeten.

Informationen zum Datenschutz finden Sie unter: https://www.land-oberoesterreich.gv.at/datenschutz

IMPRESSUM

Medieninhaber und Herausgeber:

Umwelt Prüf- und Überwachungsstelle des Landes Oberösterreich

Direktion Umwelt und Wasserwirtschaft

4021 Linz • Kärntnerstraße 10-12

Tel.: (+43 732) 7720 - 145 50, Fax.: (+43 732) 7720 - 21 45 49, E-Mail: uwd@ooe.gv.at

www.land-oberoesterreich.gv.at

Redaktion: Dipl.-Ing. Regina Pürmayr

Mitarbeit: Mag. Stefan Oitzl, Dipl.-Ing. (FH) Roland Göweil, Mag. Ing. Mario Gabrysch, Ing. Manfred Stummer, Carina Harringer MSc, Johannes Hackl, Dieter Lorenz, Melanie Nußbaumer, Leopold Steiner, Helmut Fragner, Andreas Kreiner und Ing. Stefan Rehberger (Luftgüte und Klimaschutz); Dr. Wolfgang Mayrhofer, Günter Minniberger, DI Sabine Kneißl, Claudia Friedl, Thomas Kernecker, Raphael Rauch, Ing. Adolf Schinerl, Nina Viehböck (Chemisch-analytisches Labor)

Fotos, Grafik und Druck: Abteilung Umweltschutz

1. Auflage; Juli 2022

Inhaltsverzeichnis

	Abkür	zungen	5
1.	Übers	sicht - Bewertung der Luft in Oberösterreich im Jahr 2021	7
2.	Feins 2.1	taub PM ₁₀ und PM _{2,5} Feinstaub PM ₁₀ , PM _{2,5} und PM ₁ - Messwerte und Auswertungen	
		2.1.1 Trend der Feinstaubbelastung und Average Exposure Indicator für PM _{2,5}	19
	2.2	2.1.3 Exkurs - Messung und Bewertung von partikelförmigen Schadstoffen Einhaltung von Grenzwerten – Feinstaub	23
		2.2.1 Immissionsschutzgesetz - Luft2.2.2 EU-Luftqualitätsrichtlinie 2008/50/EG	
3.		stoffdioxid und Stickstoffmonoxid	
	3.1	Stickoxide NO, NO ₂ und NOx - Messwerte und Auswertungen	26 28
	3.2	3.1.3 Langzeitvergleich Stickoxide	
	.	3.2.1 Immissionsschutzgesetz - Luft	30
4.		20	
	4.1	Ozon (O ₃) - Messwerte und Auswertungen	
	4.2	Einhaltung von Grenzwerten - Ozon	
5.		refeldioxid, Schwefelwasserstoff, Kohlenmonoxid	41
	5.1	Schwefeldioxid SO ₂ , Schwefelwasserstoff H ₂ S und Kohlenmonoxid CO – Messwerte und Auswertungen	41
	5.2	5.1.1 Langzeitvergleich Schwefeldioxid, Schwefelwasserstoff und Kohlenmonoxid Einhaltung von Grenzwerten – Schwefeldioxid und Kohlenmonoxid	
	5.2	5.2.1 Immissionsschutzgesetz – Luft	44
		5.2.2 EU-Luftqualitätsrichtlinie 2008/50/EG	
6.		rermetalle, Benzo[a]pyren und polyzyklische aromatische Kohlenwasserstof s) im PM ₁₀ - und PM _{2.5} -Staub	
	6.1	Schwermetalle im PM ₁₀ - und PM _{2,5} -Staub	46
	6.2	Benzo[a]pyren und polyzyklische aromatische Kohlenwasserstoffe (PAHs) im PM ₁₀ und PM _{2,5} - Staub	48
	6.3	Einhaltung von Grenzwerten – Schwermetalle und Benzo[a]pyren im Feinstaub	
7.	Benz 7.1	ol und BTEX-Aromaten - Messungen mit Passivsammlern Einhaltung von Grenzwerten - Benzol	
8.	Stauk	oniederschlag, Schwermetalle und polyzyklische aromatische enwasserstoffe (PAHs) in der Deposition	56
	8.1	Staubniederschlag und Schwermetalle in der Deposition	
	8.2	Eintrag von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) in der Deposition	58
	8.3	Einhaltung von Grenzwerten – Staubniederschlag und Blei und Cadmium in der Deposition	
9.		orologie im Jahresverlauf 2021	
	9.1 9.2	Meteorologische Bedingungen	
	9.3	Langzeitvergleich meteorologische Werte	69
10.		netz-Informationen	
	10.1 10.2	Kurzbeschreibung des Messnetzes	
	10.3	Lageplan der Messstationen	76
	10.4	Auftraggeber/in	

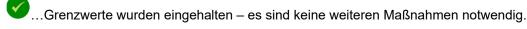
	10.5		onsgegenstand	
	10.6		zifikation	
	10.7	HMW-V	erfügbarkeit	80
	10.8	Messne	tz-Nachrichten	82
11.	Übers	sicht üb	er österreichische und internationale Grenzwerte	84
	11.1	Österre	ichische Immissionsgrenzwerte	84
		11.1.1		84
		11.1.2	Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme	
			und der Vegetation	86
		11.1.3	Grenzwerte des Ozongesetzes	87
		11.1.4	SO ₂ -Grenzwerte der zweiten Verordnung gegen forstschädliche	
			Luftverunreinigungen	87
		11.1.5	Bewertungsgrößen der Kurorterichtlinie der ÖAW	
	11.2	Europäi	sche Immissionsgrenzwerte	89
		11.2.1	Immissionsgrenzwerte der EU-Luftqualitätsrichtlinie	
		11.2.2	Beurteilungsschwellen	
			Zielwerte für Arsen, Kadmium, Nickel und Benzo[a]pyren	
	11.3	Luftqua	litäts-Leitlinienwerte der WHO	94
12.	Übers	sicht üb	er bisher erschienene Luftmessberichte	95
	12.1		sche Berichte	
	12.2		hlossene Luftgüte-Messprogramme	
	12.3		hlossene Meteorologie-Messprogramme	
	12.4		e Veröffentlichungen	
13.	Anha	na		97
•		Veraleio	ch mit der Situation in Österreich	97

Abkürzungen

Abkarzangen	
<u>Messgrößen</u>	
SO ₂ , SO ₂	Schwefeldioxid
PM ₁₀ , PM10	Feinstaub mit einem aerodynamischen Durchmesser unter 10 μm, Konzentration bezogen auf Außentemperatur
PM10g	gravimetrisch ermittelter PM ₁₀ -Wert, Probenahmetemperatur ~ Außentemperatur
PM10kont	mit einem kontinuierlichen Messgerät gemessener PM ₁₀ Feinstaub (Grimm)
PM _{2,5} , PM25	Feinstaub mit einem aerodynamischen Durchmesser unter 2,5 μm
PM25g	gravimetrisch ermittelter PM _{2,5} -Wert, Probenahmetemperatur ~ Außentemperatur
PM25kont	mit einem kontinuierlichen Messgerät gemessener PM _{2,5} -Feinstaub (Grimm)
TSP, Schwebstaub	Gesamtstaub (Total suspended particles)
NO	Stickstoffmonoxid
NO ₂ , NO2	Stickstoffdioxid
NOx	Stickoxide (NO + NO₂), ausgedrückt entweder in ppb oder als μg/m³ NO₂
CO	Kohlenmonoxid
H₂S, H2S	Schwefelwasserstoff
O ₃ , O3	Ozon
AOT40	Ozon ausgedrückt in µg/m³h, bedeutet die Summe der Differenzen zwischen den Konzentrationen über 80 µg/m³ (=40 ppb) als Einstundenmittelwerte und 80 µg/m³ während einer gegebenen Zeitspanne unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 Uhr morgens und 20 Uhr abends MEZ an jedem Tag. Die Verfügbarkeit der Ozonwerte muss dabei mindestens 90 Prozent betragen.
NMHC	Nicht-Methan-Kohlenwasserstoffe, Kohlenwasserstoffe ohne Methan
CH ₄ , CH4	Methan
THC	Gesamt-Kohlenwasserstoffe (Total Hydrocarbons)
WIR	Windrichtung
WIV	Windgeschwindigkeit
BOE	Windböe (maximale WIV, Abtastrate = 2 s)
C (Ca)	Calmen (WIV kleiner 0,5 m/s)
TEMP	Temperatur
RF	Relative Feuchte
STRB	Strahlungsbilanz
GSTR	Globalstrahlung
SONNE	Sonnenscheindauer
RM	Niederschlagsmenge (Regen und Schnee in Liter/m² = mm)
RT	Regentage (Tage mit mehr als 1 mm Niederschlag)
LUFTD	Luftdruck
LUFTD0	Luftdruck bezogen auf den Meeresspiegel (Adria)
HGT	Heizgradtage als Maß für die Heiztätigkeit (Summe der Differenzen zwischen 20 Grad C und dem Tagesmittel der Temperatur an Tagen mit einem Tagesmittel kleiner 12 Grad C)
MH	Mischungshöhe
STI	Stagnationsindex
AKL	Ausbreitungsklasse; aus Strahlungsbilanz (AKL_S) oder Temperaturprofil (AKL_T) berechnet
STABI	Stagnationsindex (Stabilitätsindex)
UVB	Ultraviolette Strahlung
As	Arsen
Cd	Cadmium (auch Kadmium geschrieben)
Cr	Chrom
Cu	Kupfer
Fe	Eisen
Hg	Quecksilber
Mn	Mangan
Ni	Nickel
Pb	Blei
Sb	Antimon
V	Vanadium
Zn	Zink
SO ₄ , SO4	Sulfat
NO ₃ , NO ₃	Nitrat
NH ₄ , NH4	Ammonium
Cl	Chlorid
GI	Official

BaP	Benzo[a]pyren
PAHs	Polyzyklische aromatische Kohlenwasserstoffe
<u>Mittelwertsarten</u>	
HMW	Halbstundenmittelwert
TMW	Tagesmittelwert
MMW	Monatsmittelwert
JMW	Jahresmittelwert
MW1	1-Stundenmittelwert, nicht gleitend
MW3	halbstündlich gleitender 3-Stundenmittelwert
MW8	gleitender 8-Stundenmittelwert (bei CO halbstündlich, bei Ozon stündlich gleitend)
MAXW	maximaler Wert im Zeitraum
M8MAXT	Maximaler MW8 des Tages
Perzentilwert	z. B. 97,5-Perzentilwert = 97,5 Prozent aller Einzelwerte des Messwertkollektivs sind kleiner als dieser Wert; wird bei gasförmigen Schadstoffen aus HMWs, bei Staub aus den TMWs berechnet
<u>Einheiten</u>	
μg/m³, μg/m3	Mikrogramm pro Kubikmeter
mg/m³, mg/m3	Milligramm pro Kubikmeter
ng/m³	Nanogramm pro Kubikmeter
μg/(m²d)	Mikrogramm pro Quadratmeter und Tag
µg/m³h	Einheit für die AOT40-Ozondosis, Konzentration multipliziert mit der Dauer in Stunden
kg/ha	Kilogramm/Hektar (10 kg/ha = 1 g/m²)
m/s	Meter pro Sekunde
ppm	Parts per Million (Teile pro Million)
ppb	Parts per Billion (Teile pro Milliarde)
W/m², W/m2	Watt pro Quadratmeter
hPa	Hektopascal (= Millibar)
mm	Millimeter (Niederschlag) = Liter/m²
h	Stunden
Anz. Üb	Anzahl Überschreitungstage (bei PM ₁₀)
Anz. Stat	Anzahl Stationen
IG-L	Immissionsschutzgesetz - Luft
CLAIRISA	Oö. Klima- und Luftgüteinformationssystem im Web
	(Climate Air Information System for Upper Austria)
ÖAW	Österreichische Akademie der Wissenschaften
WHO	Weltgesundheitsorganisation
MEZ	Mitteleuropäische Zeit
Umrechnungsfaktoren (bezoge	en auf 20 Grad C und 1013 hPa)
SO ₂ :1 ppl	b = 2.6647 ug/m³

 $\begin{array}{lll} SO_2: & & & 1 \ ppb = 2,6647 \ \mu g/m^3 \\ NO: & & 1 \ ppb = 1,2471 \ \mu g/m^3 \\ NO_2: & & 1 \ ppb = 1,9123 \ \mu g/m^3 \\ CO: & & 1 \ ppm = 1,1640 \ mg/m^3 \\ H_2S: & & 1 \ ppb = 1,4170 \ \mu g/m^3 \\ O_3: & & 1 \ ppb = 1,9954 \ \mu g/m^3 \end{array}$


1 ppm = 1000 ppb 1 mg/m³ = 1000 μ g/m³

1. Übersicht - Bewertung der Luft in Oberösterreich im Jahr 2021

nach IG-L-Grenzwerten und Informationsschwelle des Ozongesetzes

					IG-L					Info
Já	ahr 2021	PM ₁₀	PM _{2,5}	NO ₂	SO ₂	со	Schwer metalle im PM- Staub	BaP im PM- Staub	Benzol	O ₃
S415	Linz-24er-Turm		✓	✓	✓					
S416	Linz-Neue Welt			✓	✓	✓		✓		✓
S431	Linz-Römerberg			✓		✓		✓		
S184	Linz-Stadtpark		✓	✓			✓	✓		✓
S173	Steyregg-Au		✓	✓		✓	✓	✓		
S404	Traun		✓	✓			✓	✓		✓
S125	Bad Ischl	✓	✓	✓						✓
S156	Braunau Zentrum	\	◆	♦	•		₹	✓	•	₹
S217	Enns-Kristein 3			✓		✓		✓		
S235	Feuerkogel	•								✓
S108	Grünbach	✓		✓						✓
S432	Lenzing 3	✓		✓			✓	✓		✓
S409	Steyr	\	✓	✓	✓					✓
S407	Vöcklabruck	\	✓	✓	✓					
S406	Wels		✓	✓	✓	✓	✓	✓	✓	✓
S266	Aurolzmünster	✓	✓	✓						
ENK1:10	Enzenkirchen (UBA)		•	✓	•					✓
ZOE2:10	Zöbelboden 2 (UBA)		•	✓	•					•

Messungen vom Umweltbundesamt. Die Daten werden informativ angeführt. Sie sind nicht Teil der Inspektionsstelle der Umwelt Prüf- und Überwachungsstelle des Landes Oö. - Siehe S. 79

- ...Die festgestellten Überschreitungen sind auf
 - einen Störfall.
 - 2. eine andere in absehbarer Zeit nicht wiederkehrende erhöhte Immission,
 - 3. die Aufwirbelung von Partikeln nach der Ausbringung von Streusand, Streusalz oder Splitt auf Straßen im Winterdienst oder
 - 4. Emissionen aus natürlichen Quellen zurückzuführen.
- ... Grenzwerte wurden eingehalten innerhalb der Toleranzmarge; es sind also keine weiteren Maßnahmen nötig.
- ...Grenzwerte wurden überschritten, eine Statuserhebung nach § 8 IG-L ist zu erstellen. bei Ozon: Die Bevölkerung wurde aktuell informiert und Verhaltensempfehlungen gegeben.

2. Feinstaub PM₁₀ und PM_{2.5}

Das Jahr 2021 war ähnlich staubarm wie die Jahre 2016, 2018, 2019 und 2020. Die Staubepisoden des Jahres 2021 fanden am 1. und 17. Jänner, von 21. bis 22. Jänner, von 14. bis 15. Februar, von 23. bis 26. Februar, von 3. bis 4. März und am 1. November 2021 statt.

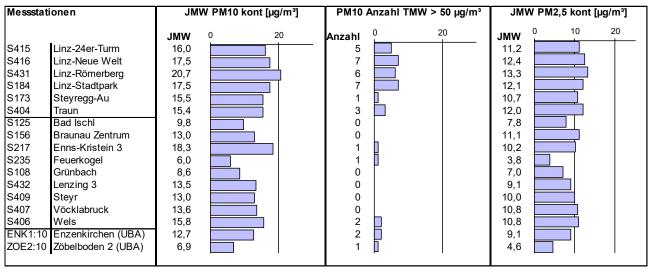
Die höchsten Tagesmittelwerte wurden während der Feinstaubepisode vom 23. bis 26. Februar 2021 registriert, bei der auch Wüstenstaub aus der Sahara nach Mitteleuropa transportiert wurde. An diesen Tagen traten an vielen Messstellen erhöhte Feinstaubwerte auf.

Der höchste Wert wurde am 23. Februar 2021 mit 86,2 μg/m³ an der Messstation Linz-Stadtpark mit einem kontinuierlich messenden Gerät registriert. Die höchsten gravimetrisch gemessenen Tagesmittelwerte traten ebenso am 23. Februar mit 73 μg/m³ an den Messstellen Linz-Römerberg und Linz-Stadtpark auf.

Die höchste Gesamtzahl der Staubüberschreitungstage im Jahr 2021 wurde an der Messstelle Linz-Stadtpark bzw. an der Messstelle Linz-Neue Welt gezählt. Es waren 7 Tage mit mehr als 50 μg/m³ im Tagesmittelwert. Der Grenzwert des IG-L von 25 Überschreitungstagen wurde damit deutlich unterschritten. An den Messstellen Bad Ischl, Braunau Zentrum, Grünbach. Lenzing 3, Steyr und Vöcklabruck gab es im Jahr 2021 keine Staubüberschreitungstage. An allen anderen ganzjährigen Messstellen traten 1 bis 6 Überschreitungstage auf.

Die Analyse der Staubinhaltsstoffe ergab außerdem, dass in Linz-Neue Welt an einem Tag die Überschreitung auf Grund von Salzstreuung zustande kam. Dieser Tag zählt nicht für die Jahresbilanz. Die höchste Anzahl an Überschreitungstagen trat daher mit 7 Überschreitungstagen an der Station Linz-Stadtpark auf. Das entspricht 28 Prozent des IG-L-Grenzwertes von maximal 25 Überschreitungstagen.

Die Anzahl der Staubüberschreitungstage für PM₁₀ zeigt seit dem Jahr 2010 einen ausgeprägt sinkenden Trend sowohl in Oberösterreich als auch im Ballungsraum Linz.


Der IG-L Grenzwert für den Jahresmittelwert für PM $_{10}$ von 40 μ g/m³ wurde an allen Messstellen deutlich unterschritten, wobei der höchste Wert an der verkehrsnahen Messstellen Linz-Römerberg mit 19,2 μ g/m³ erreicht wurde. Seit dem Messbeginn im Jahr 2001 zeigt das Niveau der Jahresmittelwerte für PM $_{10}$ einen kontinuierlich sinkenden Trend.

Besonders niedrig waren die Jahresmittelwerte für PM₁₀ im Jahr 2020 bedingt durch die Corona Pandemie. Im Jahr 2021 stiegen die Jahresmittelwerte für PM₁₀ nur an wenigen Messstellen leicht an, was zum Teil auch noch auf die Folgen der Corona Pandemie zurückzuführen ist.

Ebenso wurde der $PM_{2,5}$ -Jahresmittelwert von 25 $\mu g/m^3$ an allen Messstellen unterschritten. Hier lag der höchste Wert an der Messstelle Linz-Römerberg bei 13,3 $\mu g/m^3$. Bei den Jahresmittelwerten für $PM_{2,5}$ ist ebenso ein leichter Rückgang der JMW-Konzentrationen zu verzeichnen.

Der AEI (Average Exposure Indicator) für $PM_{2,5}$ ist ein österreichweiter Indikator, bei dem in Oberösterreich die Messstelle Linz-Stadtpark beinhaltet ist. Der Messwert an der Messstelle Linz-Stadtpark betrug 11,8 μ g/m³ und verringerte sich seit 2010 um etwa 40 Prozent.

2.1 Feinstaub PM₁₀, PM_{2,5} und PM₁ - Messwerte und Auswertungen

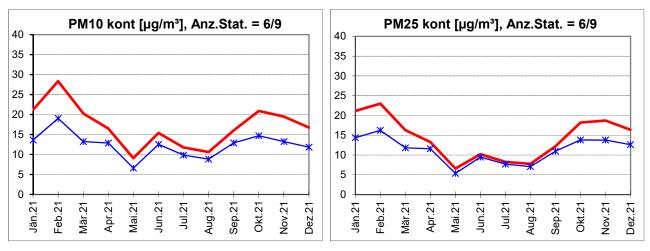

Der Jahresmittelwert wird nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Abbildung 1: Stationsvergleich zu Feinstaub PM₁₀ und PM_{2,5} im Jahr 2021

		Verfü ke	gbar- eit	Jał	nresm	ittelwe	erte	An- zahl		MAX	TMW		MAX	HMW
Fei	instaub 2021	PM ₁₀	PM ₁₀ kont	PM ₁₀ g	PM ₁₀ kont	PM _{2,5}	PM _{2,5} kont	PM ₁₀ - TMW > 50	PM ₁₀	PM ₁₀ kont	PM _{2,5}	PM _{2,5} kont	PM ₁₀ kont	PM _{2,5} kont
		[%	6]		[µg	/m³]		μg/m³		[µg/	/m³]		[µg	/m³]
S415	Linz-24er-Turm		99		16,0		11,2	5		65,0		44,2	179	97
S416	Linz-Neue Welt	100	100	17,4	17,5		12,4	7	72,0	67,8		45,5	183	113
S431	Linz-Römerberg	100	100	19,2	20,7		13,3	6	73,0	78,0		46,2	219	77
S184	Linz-Stadtpark	100	100	15,6	17,5	11,3	12,1	7	73,0	86,2	47,0	51,0	172	109
S173	Steyregg-Au		99		15,5	10,4	10,7	1		54,7	33,0	32,9	169	85
S404	Traun	96	99	15,5	15,4		12,0	3	58,0	55,8		41,2	180	160
S125	Bad Ischl	3	100		9,8		7,8	0		47,7		24,0	64	48
S156	Braunau Zentrum	85	99		13,0		11,1	0	46,0	44,1		36,1	218	75
S217	Enns-Kristein 3	100	100	17,7	18,3		10,2	1	56,0	53,0		37,3	186	48
S235	Feuerkogel		98		6,0		3,8	1		54,1		16,7	138	54
S108	Grünbach		96		8,6		7,0	0		49,7		22,7	93	58
S432	Lenzing 3		96		13,5	9,5	9,1	0		41,5	35,0	32,7	142	49
S409	Steyr	3	100		13,0		10,0	0		41,1		38,0	136	50
S407	Vöcklabruck		99		13,6		10,8	0		49,8		34,3	178	78
S406	Wels	100	99	15,6	15,8	10,9	10,8	2	56,0	55,1	39,0	37,4	118	81
S266	Aurolzmünster		99		14,9		10,7	1		52,0		32,7	241	108
S262	Eferding 2*		29					5						
S263	Kremsmünster 2*		40					1						
S270	Leonding 2*		56					0		43,9		36,9	103	55
S269	Marchtrenk 2*		60					0		45,8		40,0	94	81
S268	Steyrermühl 4*		55					0		42,3		37,2	64	55
S265	Vöcklamarkt*		41					2						
ENK1:10	Enzenkirchen (UBA)		98		12,7		9,1	2		56,9		28,6	126	100
ZOE2:10	Zöbelboden 2 (UBA)		98		6,9		4,6	1		52,9		18,0	71	30
*) keine (ganzjährige Messung													

JMWs werden nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind. PM $_{10}$ -Grenzwertüberschreitung: Das IG-L erlaubt maximal 25 Tage über 50 μ g/m 3 bei PM $_{10}$ pro Messstelle, die EU 35 Tage. Zur Berechnung der Anzahl der PM $_{10}$ -TMW über 50 μ g/m 3 werden in erster Linie die gravimetrischen, in zweiter Linie die kontinuierlich gemessenen Werte verwendet.

Tabelle 1: Messwerte Feinstaub PM₁₀ und PM_{2,5} im Jahr 2021

- Mittel der Stationen im Raum Linz - Mittel der Stationen außerhalb des Raums Linz

Anz. Stat.: z. B. Anz. Stat. = 6/9 heißt, dass 6 Stationen im Raum Linz und 9 Stationen außerhalb gemittelt wurden. Linz: Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Steyregg-Au, Traun OÖ ohne Raum Linz: Bad Ischl, Braunau Zentrum, Enns-Kristein, Feuerkogel, Grünbach, Lenzing 3, Steyr, Vöcklabruck, Wels

Abbildung 2: Mittlerer Jahresgang der Monatsmittelwerte – Feinstaub

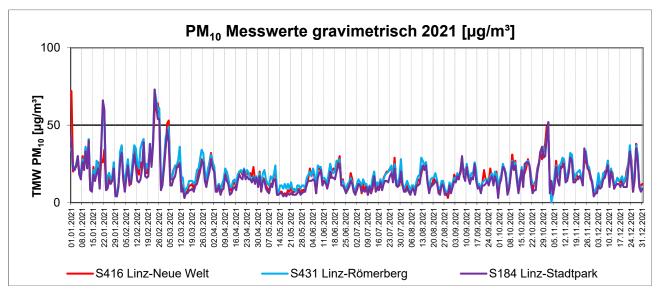


Abbildung 3: Verlauf der PM₁₀ gravimetrisch - Tagesmittelwerte 2021

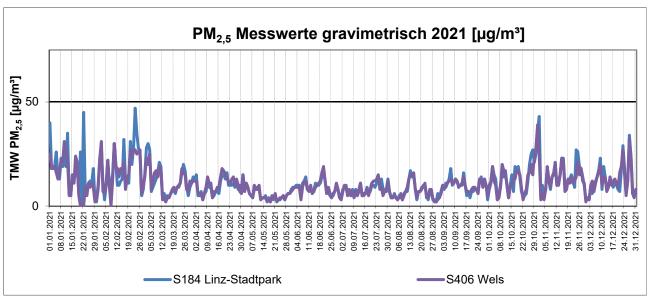


Abbildung 4: Verlauf der PM_{2,5} gravimetrisch -Tagesmittelwerte 2021

0004	S415	S4	16	S4	31	S1	84	S173	S4	04	
2021 TMW größer	Linz- 24er- Turm	Linz-Ne	ue Welt	Linz-Rö	merberg	Linz-Sta	adtpark	Stey- regg- Au	Traun		
50 μg/m³	PM ₁₀ kont	PM ₁₀ kont	PM ₁₀ g	PM ₁₀ kont	PM ₁₀ g	PM ₁₀ kont	PM ₁₀ g	PM ₁₀ kont	PM ₁₀ kont	PM ₁₀ g	
01.01.2021	31,1	46,5	72,0	30,8	35,0	36,3	42,0	29,7	42,3		
21.01.2021	47,7	27,7	26,0	55,6	60,0	59,3	66,0	20,3	18,9	14,0	
22.01.2021	53,1	27,5	34,0	48,7	58,0	55,4	60,0	23,3	25,2	24,0	
14.02.2021	27,1	27,3	26,0	55,1	35,0	18,0	15,0	17,2	22,0	23,0	
15.02.2021	41,3	26,4	22,0	57,1	39,0	29,4	22,0	16,5	24,3	24,0	
23.02.2021	65,0	58,8	59,0	78,0	73,0	86,2	73,0	43,9	40,1	40,0	
24.02.2021	64,8	62,0	62,0		66,0	70,8	62,0	44,3	49,8	52,0	
25.02.2021	56,3	67,8	64,0		60,0	64,2	54,0	46,6	55,6	58,0	
26.02.2021	61,3	59,8	57,0	70,0	61,0	67,7	54,0	54,7	55,8	57,0	
03.03.2021	49,0	47,4	51,0	47,5	46,0	54,8	47,0	43,7	36,9	35,0	
04.03.2021	45,0	52,6	53,0	54,8	49,0	45,9	39,0	43,9	46,6	47,0	
01.11.2021	44,1	45,7	45,0	44,4	44,0	49,6	52,0	36,5	40,1	38,0	
Maximum	65,0	67,8	72,0	78,0	73,0	86,2	73,0	54,7	55,8	58,0	
Anzahl Werte	363	363	365	363	364	365	365	361	364	352	
Überschrei- tungen	5	5	7	6	6	7	7	1	2	3	

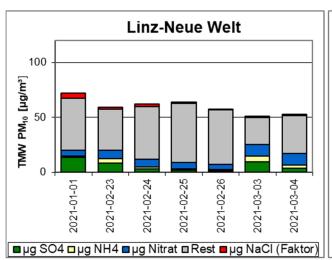
Durch Salzstreuung verursachte Überschreitungen sind weiß auf grau markiert, sonstige Überschreitungen sind rot markiert.

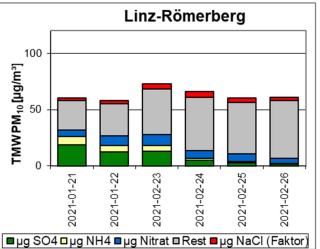
Tabelle 2: Ballungsraum Linz - PM₁₀-TMW an Tagen mit Überschreitungen

	S125	0 17	000	0.71	278	S235	S108	S432	S409	S407	070	3400	S266	S262	S263	S265	ENK 1:10	ZOE 2:10
2021 TMW größer 50 µg/m³	Bad Ischi	Braunau	Zentrum	7	Ellis-Kristell	Feuerkogel	Grünbach	Lenzing	Steyr	Vöcklabruck	ciow	Weis	Aurolzmünster	Eferding 2	Kremsmünster 2	Vöcklamarkt	Enzenkirchen (UBA)	Zöbelboden 2 (UBA)
	PM₁₀ kont	PM ₁₀ kont	PM ₁₀ g	PM₁₀ kont	PM ₁₀ g	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM ₁₀ g	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont	PM₁₀ kont
17.01.2021	16,0	25,6	28,0	53,0	39,0	1,5	5,3	17,7	20,9	23,6	28,8	27,0	28,8	25,5	29,4	24,1	25,6	11,8
24.02.2021	44,8	34,8	38,0	40,2	45,0	54,1	38,6	40,6	34,2	41,1	50,1	49,0	43,2	53,0	41,5	44,3	46,5	43,2
25.02.2021	47,7	39,8	43,0	42,0	49,0	39,1	48,7	40,6	38,5	46,4	53,1	54,0	47,7	61,1	46,9	50,8	56,2	52,9
26.02.2021	38,9	44,1	46,0	49,3	56,0	38,1	49,7	41,4	41,1	49,8	55,1	56,0	52,0	75,1	54,1	59,3	56,9	41,0
03.03.2021	35,0	19,0	28,9	26,0	38,1	38,0	2,2	20,7	27,4	22,9	33,3	35,5	32,9	53,1	31,0	41,5	34,0	5,1
04.03.2021	47,0	19,8	27,7	25,0	38,3	44,0	25,0	22,5	22,4	26,4	28,3	41,1	31,5	51,8	32,2	41,9	31,6	19,0
Maximum	47,7	44,1	46,0	53,0	56,0	54,1	49,7	41,5	41,1	49,8	55,1	56,0	52,0	75,1	54,1	59,3	56,9	52,9
Anzahl Werte	365	363	310	363	365	348	342	350	363	362	364	364	361	104	144	150	354	354
Über- schreitun- gen	0	0	0	1	1	1	0	0	0	0	2	2	1	5	1	2	2	1

Durch Salzstreuung verursachte Überschreitungen sind weiß auf grau markiert, sonstige Überschreitungen sind rot markiert.

Tabelle 3: Oberösterreich ohne Ballungsraum Linz - PM₁₀-TMW an Tagen mit Überschreitungen


Beitrag der Winterstreuung zur PM₁₀-Immission


PM₁₀-Überschreitungen, die nachweislich auf die Aufwirbelung von Partikeln nach der Aufbringung von Streusand, Streusalz oder Splitt auf Straßen im Winterdienst zurückzuführen sind, sind seit in Kraft treten der IG-L-Novelle BGBI. Nr. 77/2010 am 18. August 2010 nicht zur Beurteilung der zulässigen Anzahl an Überschreitungstage heranzuziehen.

Der Beitrag der Salzstreuung lässt sich aus dem Chloridgehalt im PM₁₀ nachweisen. Dazu wurden im Winter an den Messstellen Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Enns-Kristein und Wels die gravimetrischen Staubfilter der Überschreitungstage einzeln analysiert, allerdings nur an Tagen, wo Salzstreuung vorhanden oder plausibel war.

Im Winter wurde mit Salz gestreut. Jedoch traf es nur bei einer Überschreitung zu, dass der Messwert ohne den NaCl-Anteil unter 50 μg/m³ gewesen wäre. Das war im Jahr 2021 an der Messstelle Linz-Neue Welt am 3. März. Dieser Tag ist in der vorigen Tabelle weiß auf grau markiert.

An der Beurteilung hinsichtlich der Grenzwerte änderte sich dadurch nichts Wesentliches, da die Grenzwerte der EU und des IG-L auch ohne Berücksichtigung der Winterstreuung an allen Stationen eingehalten wurden.

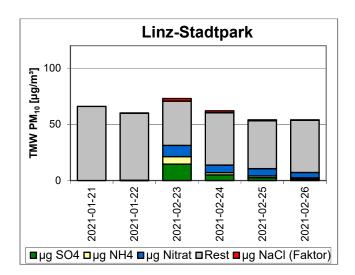
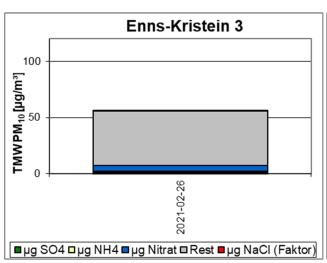



Abbildung 5: Gehalt an NaCl u. Ionen im PM₁₀ im Ballungsraum Linz an den Stationen Linz-Neue Welt, Linz-Römerberg und Linz-Stadtpark an Überschreitungstagen in den Wintermonaten 2021 [μg/m³]

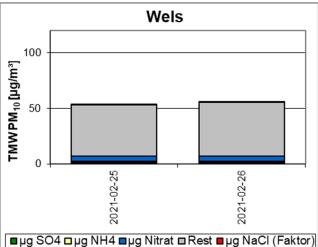


Abbildung 6: Gehalt an NaCl und Ionen im PM₁₀ in Oberösterreich ohne Ballungsraum Linz an den Stationen Enns-Kristein und Wels an Überschreitungstagen in den Wintermonaten 2021 [µg/m³]

Salzstreuung 2021	Linz- Neue Welt	Linz- Römerberg	Linz- Stadtpark	Enns- Kristein 3	Wels
Mittlerer NaCI-Gehalt der Üb. Tage [%]	2,7%	5,3%	2,7%	0,5%	1,1%
Maximaler NaCl-Gehalt der Üb. Tage (%]	6,1%	7,4%	4,4%	0,5%	1,6%
Mittlere NaCl-Konz. der Üb. Tage [µg/m³]	1,7	3,4	1,7	0,3	0,6
Maximale NaCl-Konz der Üb. Tage [μg/m³]	4,4	4,9	2,6	0,3	0,8
Tage	3.3.2021				
Abzuziehende Überschreitungstage	1	0	0	0	0

Tabelle 4: NaCl-Gehalte im PM₁₀ an straßennahen Messstationen

	202 (ganzjährige l		Jänner	Februar	März	April	Mai	Juni	Juli	August	September	Oktober	November	Dezember	Anzahl Tage > 50 µg/m³	Um Winter- Streuung reduzierte Anzahl Tage
S415	PM ₁₀ kont	Linz-24er-Turm	1	4	0	0	0	0	0	0	0	0	0	0	5	5
S416	PM ₁₀ g	Linz-Neue Welt	1	4	2	0	0	0	0	0	0	0	0	0	7	6
S431	PM ₁₀ g	Linz-Römerberg	2	4	0	0	0	0	0	0	0	0	0	0	6	6
S184	PM ₁₀ g	Linz-Stadtpark	2	4	0	0	0	0	0	0	0	0	1	0	7	7
S173	PM ₁₀ kont	Steyregg-Au	0	1	0	0	0	0	0	0	0	0	0	0	1	1
S404	PM ₁₀ g	Traun	0	3	0	0	0	0	0	0	0	0	0	0	3	3
S125	PM ₁₀ kont	Bad Ischl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S156	PM ₁₀ g	Braunau Zentrum	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S217	PM ₁₀ g	Enns-Kristein 3	0	1	0	0	0	0	0	0	0	0	0	0	1	1
S235	PM ₁₀ kont	Feuerkogel	0	1	0	0	0	0	0	0	0	0	0	0	1	1
S108	PM ₁₀ kont	Grünbach	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S432	PM ₁₀ kont	Lenzing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S409	PM ₁₀ kont	Steyr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S407	PM ₁₀ kont	Vöcklabruck	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S406	PM ₁₀ g	Wels	0	2	0	0	0	0	0	0	0	0	0	0	2	2
S266	PM ₁₀ kont	Aurolzmünster	0	1	0	0	0	0	0	0	0	0	0	0	1	1
ENK1:10	PM ₁₀ kont	Enzenkirchen (UBA)	0	2	0	0	0	0	0	0	0	0	0	0	2	2
ZOE2:10	PM ₁₀ kont	Zöbelboden 2 (UBA)	0	1	0	0	0	0	0	0	0	0	0	0	1	1

Tabelle 5: Anzahl der Überschreitungstage PM₁₀ - TMWs über 50 µg/m³

Im Gegensatz zum Streusalz lässt sich der Beitrag von Streusplitt nur schwer quantifizieren, da chemisch kein Unterschied zu den übrigen mineralischen Anteilen (Straßenabrieb, Verwitterung) festzustellen ist. Wenn der Grobanteil (PM₁₀-PM_{2,5}) allerdings mehr als die Hälfte des PM₁₀-TMWs beträgt, ist das ein Anhaltspunkt für einen deutlichen Beitrag des Streusplitts. Laut Winterstreuverordnung kann man dann die Hälfte der Differenz zwischen PM₁₀ und PM_{2,5} der Splitt-Streuung zuordnen.

Beitrag von natürlichen Quellen zur PM₁₀-Immission

Laut EU-Luftqualitätsrichtlinie 2008/50/EG Art. 20 ist ein Luftqualitätsplan nicht notwendig, wenn eine Überschreitung durch natürliche Quellen mitverursacht wurde. Das trifft auf den Saharastaub zu, der öfters nach Österreich fernverfrachtet wird und hin und wieder signifikante Beiträge zu PM_{10} -Tagesmittelwerte über $50 \mu g/m^3$ ergibt.

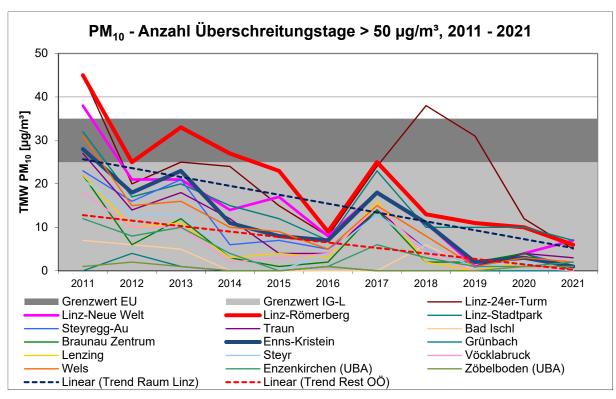
Eine Auswertung des Zeitraums November 2012 – Mai 2016 durch das Umweltbundesamt UBA hat ergeben, dass Wüstenstaub – der ausschließlich aus der Sahara kommt – üblicherweise an 6 Prozent aller Tage am Sonnblick, an 3 Prozent aller Tage in Graz und an 2 Prozent aller Tage in Wien und Linz identifizierbar ist. Meist kommt er mit Strömungen von Südwest bis West, selten direkt von Süden.

Die Messstelle Feuerkogel dient auch dazu, Ferntransportphänomene wie Saharastaub, Vulkanasche oder auch aus dem Tal aufgestiegene Abgase zu detektieren.

Im Jahr 2021 wurden an der Messstelle Feuerkogel die höchsten Konzentrationen an PM_{10} Feinstaub am 23., 24., 25. und 26. Februar mit 43, 54, 39 und 38 $\mu g/m^3$ gemessen. In diesem Zeitraum traten auch Überschreitungen des Tagesmittelwertes von 50 $\mu g/m^3$ an allen Messstellen im Ballungsraum Linz (Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Steyregg-Au und Traun) und an einigen Messstellen in Österreich ohne Ballungsraum Linz (in Enns-Kristein, Wels, Aurolzmünster, Eferding 2, Kremsmünster 2 und Vöcklamarkt) sowie an den Messstellen Enzenkirchen und Zöbelböden, die vom Umweltbundesamt betrieben werden, auf.

Diese Überschreitungen sind durch Saharastaub mitverursacht worden.

Feinstaub PM₁ - Messwerte und Auswertungen 2021


An den Messstellen Grünbach und Linz Stadtpark wird PM₁ kontinuierlich gemessen.

		Jahresmittelwerte	MAX TMW	MAX HMW
!	Feinstaub PM₁ 2021	PM₁ kont	PM₁ kont	PM₁ kont
		[µg/m³]	[µg/m³]	[µg/m³]
S184	Linz-Stadtpark	9,2	42,3	71,6
S108	Grünbach		15,1	38,5

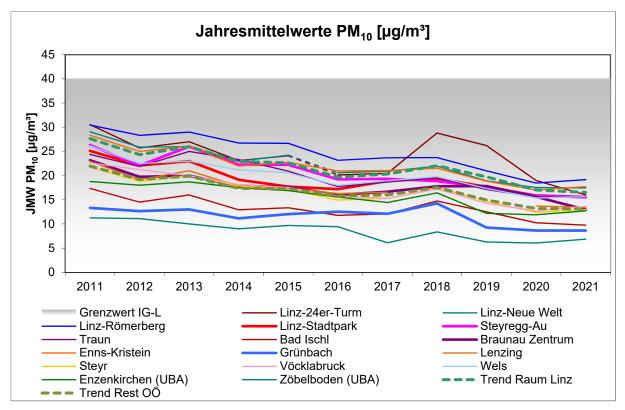
JMWs werden nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Tabelle 6: Messwerte Feinstaub PM₁ im Jahr 2021

2.1.1 Trend der Feinstaubbelastung und Average Exposure Indicator für PM_{2,5}

¹) Die hohen Werte der Messstelle Linz-24er-Turm sind auf die Nähe der Messstelle zur Baustelle für die Errichtung der beiden Bypass Brücken für die Linzer Autobahnbrücke (VOEST - Brücke) zurückzuführen. Die Bauarbeiten begannen im Jänner 2018 und die Bypass Brücken wurden am 28. August 2020 für den Verkehr freigegeben.

Abbildung 7: PM_{10} Anzahl der Überschreitungstage mit TMW > 50 μ g/m³ im Trend seit 2011


Jahr	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Grenzwert EU	35	35	35	35	35	35	35	35	35	35	35
Grenzwert IG-L	25	25	25	25	25	25	25	25	25	25	25
Linz-24er-Turm	45	20	25	24	15	8	24	38 ¹	31 ¹	12 ¹	5
Linz-Neue Welt	38	21	21	14	17	8	18	11	1	4	7
Linz-Römerberg	45	25	33	27	23	9	25	13	11	10	6
Linz-Stadtpark	32	17	20	15	12	7	23	10	10	10	7
Steyregg-Au	23	16	21	6	7	5	13	5	1	4	1
Traun	27	14	18	12	4	4	14	5	1	4	3
Bad Ischl	7	6	5	0	0	0	0	6	0	1	0
Braunau Zentrum	22	6	12	3	1	2	14	2	2	4	0
Enns-Kristein	28	18	23	11	8	7	18	11	2	3	1
Grünbach	0	4	1	0	0	1	0	0	0	0	0
Lenzing	22	10	11	3	4	3	16	2		2	0
Steyr	21	13	13	4	0	4	13	5	1	2	0
Vöcklabruck	18	10	10	2	3	4	15	4	0	1	0
Wels	31	15	16	10	9	5	15	8	1	3	2
Enzenkirchen (UBA)	12	8	10	4	0	1	6	3	1	1	2
Zöbelboden (UBA)	1	2	1	0	0	1	0	0	0	1	1

Überschreitungen des IG-L-Grenzwerts sind fett und grau hinterlegt, Überschreitungen des EU-Grenzwerts sind in Rot und grau hinterlegt dargestellt

Es sind die in den Jahresberichten veröffentlichten Überschreitungen, wobei sich die Messmethode bzw. der angewendete Standortfaktor teilweise geändert haben. Es wurden nur jene Stationen ausgewertet, die das ganze Kalenderjahr betrieben wurden.

Tabelle 7: Anzahl der TMW-Überschreitungen > 50 μg/m³ von PM₁₀ in den Jahren 2011 – 2021

¹) Diese hohen Werte sind auf die Nähe der Messstelle Linz-24er-Turm zur Baustelle für die Errichtung der beiden Bypass Brücken für die Linzer Autobahnbrücke (VOEST - Brücke) zurückzuführen. Die Bauarbeiten begannen im Jänner 2018 und die Bypass Brücken wurden am 28. August 2020 für den Verkehr freigegeben.

Die hohen Werte an der Messstelle Linz-24er-Turm sind auf die Nähe zur Baustelle für die Errichtung der beiden Bypass Brücken für die Linzer Autobahnbrücke (VOEST - Brücke) zurückzuführen. Die Bauarbeiten begannen im Jänner 2018 und die Bypass Brücken wurden am 28. August 2020 für den Verkehr freigegeben.

Abbildung 8: PM₁₀ Jahresmittelwerte im Trend seit 2011

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Grenzwert IG-L	40	40	40	40	40	40	40	40	40	40	40
Linz-24er-Turm	30,6	25,7	27,0	23,1	24,1	20,1	20,5	28,8*	26,2*	19,0*	16,0
Linz-Neue Welt	29,1	25,9	26,0	22,9	24,2	20,6	20,9	21,9	18,9	17,5	17,4
Linz-Römerberg	30,4	28,3	29,0	26,8	26,7	23,2	23,7	23,7	21,0	18,5	19,2
Linz-Stadtpark	25,1	22,1	23,0	19,1	17,7	17,2	18,9	19,4	17,7	15,9	15,6
Steyregg-Au	26,3	22,1	26,0	22,3	22,3	19,2	19,3	18,9	17,6	15,8	15,5
Traun	24,4	21,9	25,0	23,3	20,9	17,7	18,7	19,5	17,1	15,6	15,5
Bad Ischl	17,4	14,5	16,0	12,9	13,4	11,8	12,1	14,8	12,5	10,2	9,8
Braunau Zentrum	23,2	19,8	20,0	17,9	17,6	16,0	16,7	17,8	17,8	15,6	13,0
Enns-Kristein	28,3	25,0	26,1	22,0	22,8	21,0	21,1	21,5	18,8	17,0	17,7
Grünbach	13,3	12,7	13,0	11,2	12,0	12,5	12,1	14,3	9,3	8,6	8,6
Lenzing	23,0	19,2	21,0	17,9	17,4	16,3	16,6			13,7	13,5
Steyr	21,8	18,8	20,0	17,8	17,1	14,9	15,3	17,5	14,7	12,4	13,0
Vöcklabruck	22,6	21,2	20,0	18,2	17,5	15,7	15,3	17,2	14,3	12,7	13,6
Wels	26,2	22,5	23,0	21,2	20,6	18,0	18,9	19,8	17,3	15,4	15,6
Enzenkirchen (UBA)	18,8	18,0	18,7	17,5	16,9	15,6	14,4	16,4	12,2	11,9	12,7
Zöbelboden (UBA)	11,3	11,1	10,0	9,0	9,7	9,4	6,1	8,4	6,3	6,1	6,9

^{*)} Diese hohen Werte sind auf die Nähe der Messstelle Linz-24er-Turm zur Baustelle für die Errichtung der beiden Bypass Brücken für die Linzer Autobahnbrücke (VOEST - Brücke) zurückzuführen. Die Bauarbeiten begannen im Jänner 2018 und die Bypass Brücken wurden am 28. August 2020 für den Verkehr freigegeben.

Es sind die in den Jahresberichten veröffentlichten Werte, wobei sich die Messmethode bzw. der angewendete Standortfaktor teilweise geändert haben. Es wurden nur jene Stationen ausgewertet, die das ganze Kalenderjahr betrieben wurden.

Tabelle 8: PM₁₀ Jahresmittelwerte im Trend seit 2011

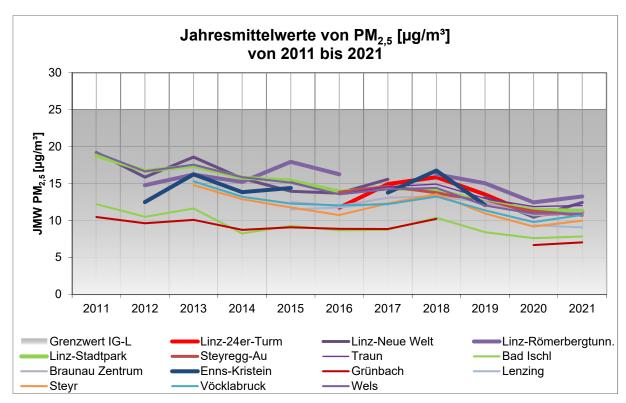


Abbildung 9: PM_{2,5} Jahresmittelwerte im Trend seit 2011

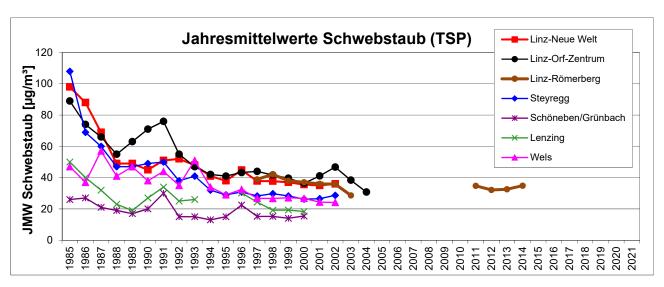
Jahr	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Grenzwert IG-L	25	25	25	25	25	25	25	25	25	25	25
Linz-24er-Turm						11,7	14,9	15,9	13,5	10,8	11,2
Linz-Neue Welt	19,2	15,9	18,6	15,7	14,0	13,7	15,6		13,2	10,5	12,4
Linz-Römerberg		14,8	16,2	15,2	17,9	16,3		16,3	15,0	12,5	13,3
Linz-Stadtpark	18,8	16,7	17,4	15,8	15,4	13,9	14,3	14,1	12,5	11,5	11,3
Steyregg-Au						13,8	14,6	13,8	12,5	11,3	10,4
Traun					15,2	13,5	14,6	14,9	13,0	11,9	12,0
Bad Ischl	12,2	10,5	11,6	8,2	9,3	8,7	8,7	10,4	8,4	7,6	7,8
Braunau Zentrum					12,5	12,0	13,1	13,3	12,5	10,7	11,1
Enns-Kristein		12,5	16,3	13,8	14,4		13,8	16,8	12,1		10,2
Grünbach	10,5	9,6	10,1	8,7	9,1	8,9	8,9	10,2		6,7	7,0
Lenzing					11,5	11,8	12,4			9,3	9,1
Steyr			14,8	12,9	11,8	10,7	12,3	13,6	11,0	9,2	10,0
Vöcklabruck			15,3	13,2	12,3	12,1	12,2	13,2	11,4	9,8	10,8
Wels	19,2	16,7	17,6	15,9	15,1	13,5	14,2	14,4	12,0	10,9	10,9
Enzenkirchen (UBA)		13,8	14,7	13,3	13,4	11,6	10,6	12,5	9,1	8,4	9,1
Zöbelboden (UBA)				6,9	7,4	6,5	4,8	7,2	5,0	4,5	4,6

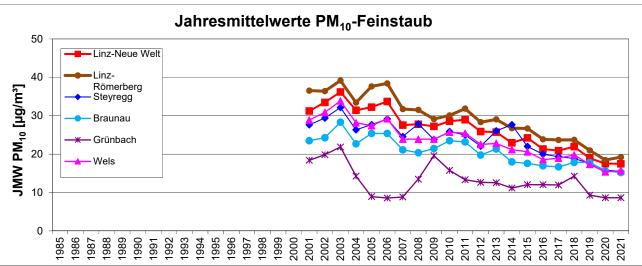
Es sind die in den Jahresberichten veröffentlichten Werte, wobei sich die Messmethode bzw. der angewendete Standortfaktor teilweise geändert haben. Es wurden nur jene Stationen ausgewertet, die das ganze Kalenderjahr betrieben wurden.

Tabelle 9: PM_{2,5} Jahresmittelwerte im Trend seit 2011

Average Exposure Indicator für PM_{2,5}

Der AEI = Average exposure indicator wird berechnet als der mittlere 3-Jahresmittelwert von repräsentativen Messstellen im städtischen Hintergrund eines jeden EU-Mitgliedsstaats. Die für Österreich gesetzlich dafür verwendeten Messstellen (siehe § 5 Abs. 3 IG-L-Messkonzeptverordnung 2012) sind Wien AKH, Graz Nord, Linz-Stadtpark, Salzburg Lehener Park und Innsbruck Zentrum. Dort muss mit der Referenzmethode (Gravimetrie) gemessen werden. Ist der AEI 2010 > 18, muss bis 2020 um 20 Prozent reduziert werden, sonst um 15 Prozent.


Der Beitrag von Oberösterreich zum AEI (Station Stadtpark) hat sich seit 2010 im Vergleich zum Jahr 2020 um 35 Prozent reduziert.


Im Jahr 2021 betrug der AEI für die Messtation Linz-Stadtpark 11,8 und ist somit im Vergleich zum Jahr 2010 um etwa 40 % gesunken.

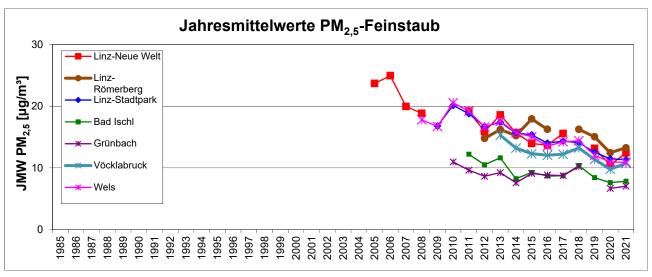
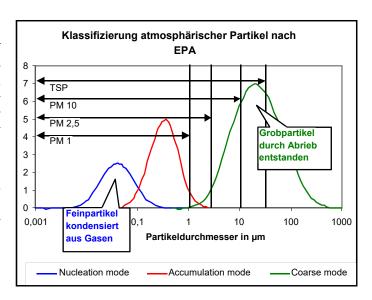

Mittelw	erte über 3 Jahre	AEI 2010 (2008-10)	AEI 2020 (2018-20)	Änderung 2010-2020	AEI 2021 (2019-21)
S184	Linz-Stadtpark	19,6	12,7	- 35 %	11,8
S406	Wels (nicht im AEI)	19,1	12,5	- 35 %	11,3

Tabelle 10: Beiträge zum Average Exposure Indicator für PM_{2,5}

2.1.2 Langzeitvergleich Feinstaub

Die TSP-Messung wurde ab 2001 durch die PM₁₀ - Messung ersetzt. Die PM_{2.5} - Messung wurde 2005 begonnen.

Abbildung 10: Langzeitvergleich Partikel TSP, PM_{10} und $PM_{2,5}$


2.1.3 Exkurs - Messung und Bewertung von partikelförmigen Schadstoffen

Als <u>Schwebstaub</u> (auch nur Staub genannt) werden feste und flüssige Teilchen in der Luft bezeichnet, die sowohl in Größe als auch in chemischer Zusammensetzung sehr unterschiedlich sein können. In EU-Richtlinien wird der Begriff <u>Partikel</u> verwendet. Insbesondere für kleine Partikel ist auch der Begriff <u>Aerosol gebräuchlich</u>

Primär- und Sekundärstaub

Teilchen, die direkt einer Emissionsquelle zugeordnet werden können, werden als <u>primäre Partikel</u> bezeichnet. <u>Sekundäre Partikel</u> entstehen durch chemische Umwandlungsvorgänge in der Atmosphäre. Dabei vereinigen sich Gase, reagieren miteinander und bilden ein festes oder flüssiges Partikel. Diese ursprünglich aus der Gasphase entstandenen Teilchen sind in der Regel unter 0,1 μm groß (Nucleation mode). Meist sind sie nicht stabil, sondern wachsen durch Kondensation anderer Gase an der Oberfläche oder durch Zusammenstöße mehrerer Teilchen zu größeren Aggregaten zusammen (Accumulation mode), die aber noch immer überwiegend unter 1 μm groß sind.

Größere Teilchen sind meistens Primärstaub, werden durch mechanische Vorgänge (Reifenabrieb, Bodenerosion) erzeugt und können 100 µm und mehr erreichen.

Gesundheitliche Auswirkungen

Für die gesundheitlichen Auswirkungen spielen die Größe der Teilchen und ihre chemische Zusammensetzung eine Rolle. Sulfate, Nitrate und Ammonium, organischer und elementarer Kohlenstoff sowie Schwermetalle finden sich vor allem im "Nucleation mode" und im "Accumulation mode".

Die größeren der einatembaren Teilchen lagern sich im Nasen- und Rachenraum ab. Staub mit einem Durchmesser von weniger als 10 µm kann den Kehlkopf passieren und in die unteren Atemwege eindringen (lungengängige bzw. thorakale Fraktion). Teilchen, die kleiner als 2,5 µm sind, können in die Lungenbläschen vordringen und von dort in die Blutbahn diffundieren (alveolengängige Fraktion).

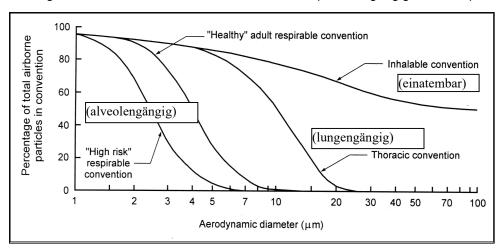


Abbildung 11: Verhalten der Partikel in der Lunge

PM₁₀, PM_{2.5} und Gesamtstaub (TSP)

Vom gesundheitlichen Standpunkt sind vor allem die Staubteilchen kleiner als 10 µm von Bedeutung (PM₁₀-Fraktion). Diese sind daher von jeher Gegenstand von Immissionsgrenzwerten. Unter anderem definierten auch das Smogalarmgesetz von 1989 und die Immissionsschutzvereinbarung von 1987 ihre Grenz-

werte für Staub kleiner 10 µm. Später stellte sich heraus, dass die damals gängige und noch immer gebräuchliche Schwebstaubmesssonde (der sogenannte "Laskuskopf") keine ausreichend scharfe Abscheidecharakteristik aufweist, sondern auch noch Partikel bis zu ca. 30 µm einlässt.

Daher wird dieser traditionelle Schwebstaub inzwischen als "Gesamtstaub" (<u>Total suspended particles</u>, <u>TSP</u>) bezeichnet und für die gezielte PM₁₀-Messung wurden neue Sonden entwickelt.

Bei der Beurteilung von TSP-Werten ist daher zu beachten, dass ungeachtet des Namens nicht der gesamte in der Luft befindliche Staub erfasst wird, sondern lediglich ein größerer Anteil davon als durch die PM₁₀-Messung. Pollenkörner, deren Durchmesser in der Regel über 30 µm liegt, passieren den TSP-Kopf nur sporadisch und werden daher auch durch die TSP-Messung kaum erfasst.

Nicht verwechseln darf man auch diesen "Gesamtstaub" mit Gesamtstaubangaben, wie sie in Emissionserklärungen und -katastern vorkommen. Diese beinhalten in der Regel den emittierten Staub zumindest bis 70 µm, teilweise aber auch bis hinauf zu Teilchen in Millimetergröße.

Da in erster Linie der Feinanteil des Schwebstaubs als gesundheitlich relevant angesehen wird, wird ab 2005 nur dieser gesetzlich geregelt, und zwar wurden bisher Grenzwerte für den lungengängigen Anteil kleiner als $10 \mu m$ (=PM₁₀) und den alveolengängigen Anteil kleiner als $2.5 \mu m$ (= PM_{2.5}) erlassen.

Da der alte EU-Grenzwert für den Gesamtstaub noch bis 31.12.2004 galt, existierten auch im IG-L in der Übergangszeit beide Grenzwerte (Gesamt-Schwebstaub und PM₁₀) parallel und es musste beides bewertet werden. Der TSP-Wert konnte aber aus dem PM₁₀-Wert hochgerechnet werden. Je nach der Zusammensetzung des vorhandenen Schwebstaubs ist ein unterschiedlicher Teil davon "PM₁₀-Staub", im Durchschnitt etwa 80 – 90 Prozent. Ab 2003 wurde nur mehr an den Stationen Linz-ORF-Zentrum und Enns-Kristein Gesamtstaub gemessen und Ende 2004 wurde die TSP-Messung ganz eingestellt.

Methoden der PM₁₀-Messung

Für PM₁₀ ist in der EU-Richtlinie ein manuelles gravimetrisches Verfahren als Referenzmethode vorgeschrieben. Zur Bestimmung von PM₁₀ kann auch ein anderes Verfahren eingesetzt werden, wenn der/die betreffende Messnetzbetreiber/in nachweisen kann, dass dieses – allenfalls unter Anwendung einer Korrekturfunktion – der Gravimetrie gleichwertige Ergebnisse liefert. Zum Nachweis der Gleichwertigkeit dient der Äquivalenztest.

Geräte, die den Äquivalenztest nicht bestanden haben, können nur für orientierende Messungen herangezogen werden.

Nachfolgende Korrekturformeln wurden im Jahr 2021 für die optische, kontinuierliche Feinstaubmessung (Grimm) verwendet.

Korrekturformeln für die optisc	he Verfahren – Feinstaub kontinuierlich (Grimm)
Korrekturformeln für PM10kont#2 (Grimm)	Linz-24er-Turm: PM10#2 *0,95 (mg/m³) Linz-Neue Welt: (PM10#2 + 0,000857) / 1,089 (mg/m³) Linz-Römerberg: (PM10#2 + 0,002525) / 1,181 (mg/m³) Linz-Stadtpark: PM10#2 / 1,07 (mg/m³) Steyregg Au: (PM10#2 + 0,000893) / 1,245 (mg/m³) Bad Ischl: PM10#2 * 0,71 (mg/m³) Braunau Zentrum: PM10#2 * 0,95 (mg/m³) Enns-Kristein: (PM10#2 + 0,002046) / 1,031 (mg/m³) Feuerkogel: PM10#2 * 0,86 (mg/m³) Grünbach: (PM10#2 + 0,000205) / 1,371 (mg/m³) Lenzing 3: (PM10#2 + 0,001387) / 1,263 (mg/m³) Steyr: (PM10#2 + 0,000932) /1,281 (mg/m³) Vöcklabruck: (PM10#2 + 0,000449) / 1,267 (mg/m³) Wels: (PM10#2 + 0,000533) / 1,176 (mg/m³)
Korrekturformeln für PM25kont (Grimm)	Linz-Römerberg: (PM25 + 0,001142) / 1.197 (mg/m³) Grünbach, Bad Ischl, Feuerkogel, Lenzing 3, Wels: PM25 * 0,77 (mg/m³) Braunau Zentrum, Enns-Kristein, Linz-24er Turm, Linz-Neue Welt: PM25 * 0,85 (mg/m³) Linz-Stadtpark: PM25 * 0,88 (mg/m³) Alle anderen Stationen: PM25 * 0,81 (mg/m³)
Korrekturformeln für PM1kont (Grimm)	Grünbach: PM1 * 0,56; Linz-Stadtpark: if PM1 > 0,00202 then (PM1-0,00202)/1,12 else 0

Tabelle 11: Korrekturformeln für die optische, kontinuierliche Feintaubmessung im Jahr 2021

Praktische Durchführung der PM - Messungen

Gravimetrisches Verfahren für PM₁₀ und PM_{2,5}:

Die Probenahme des PM₁₀ erfolgt mittels eines High-Volume Staubsammelgerätes mit PM₁₀-Probenahmeaufsatz. Die Abscheidung erfolgt auf Quarzfaserfilter, wenn anschließend auch die Inhaltsstoffe analysiert werden. Ansonsten werden Glasfaserfilter verwendet. Das Staubsammelsystem verfügt über eine Druck- und Temperaturkompensation und weist ein korrigiertes Luftvolumen aus (20°C, 1013 hPa). Es werden 700 m³ Luft/24h über den Filter gesaugt. Jeder Filter wird nach 24-stündiger Konditionierung im Klimaschrank gewogen und in einem Filterhalter eingespannt. Die bestaubten Filter werden, ebenfalls nach 24-stündiger Konditionierung über Kieselgel, abermals gewogen. Aus der Differenz und dem über den Filter gesaugtem Volumen wird die Schwebstaub-Konzentration errechnet.

Die gravimetrische PM_{2.5}-Messung erfolgt analog, nur mit dem PM_{2.5}-Probenahmekopf.

Optisches Verfahren:

Messprinzip ist die Streulichtmessung der Einzelpartikel, wobei ein Halbleiterlaser als Lichtquelle dient. Wenn Partikel den Laserstrahl durchqueren, erzeugen diese einen Lichtimpuls, der in elektrische Spannungsimpulse umgewandelt wird. Die Partikelgröße ist proportional zur Intensität des reflektierten Lichtstrahls. Die Zählrate ergibt sich aus der Partikelanzahl und der Durchflussrate. Bei bekanntem Partikeldurchmesser und bekannter Dichte kann unter Annahme der Kugelform die Partikelmasse aus der Partikelanzahl abgeleitet werden. Die Lichtintensität wird außerdem von der Partikelform und dem Brechungsindex beeinflusst.

Das heißt, die Klassifizierung in PM₁₀, PM_{2,5} usw. geschieht nicht wie bei anderen Geräten oben im Ansaugkopf, sondern es wird durch ein einfaches Rohr der gesamte Schwebstaub (TSP) angesaugt und die Partikel erst bei der Messung in Größenklassen aufgeteilt. Ob man PM₁₀, PM_{2,5}, PM₁ oder Partikelzahl misst, entscheidet also die Software. Die Messeinrichtung wird nicht beheizt, daher kann man von einer einigermaßen vollständigen Erfassung der halbflüchtigen Bestandteile ausgehen.

2.2 Einhaltung von Grenzwerten – Feinstaub

2.2.1 Immissionsschutzgesetz - Luft

Anlage 1a: Immissionsgrenzwerte und Anlage 1b: Immissionsgrenzwert für PM_{2,5}

Die ab 2010 zulässige Anzahl von 25 Überschreitungen des Grenzwerts für den PM_{10} -Tagesmittelwert wurde eingehalten. Ebenso wurde der zulässige Jahresmittelwert von 40 $\mu g/m^3$ für PM_{10} und von 25 $\mu g/m^3$ für $PM_{2,5}$ eingehalten.

2021		Grenzwert		Bewertung
PM ₁₀	TMW	50 μg/m³	überschritten an allen Stationen außer Bad Ischl, Braunau Zentrum, Grün- bach, Lenzing 3, Steyr und Vöcklabruck	Ab 2010 gelten 25 Überschrei- tungstage als Grenzwert: <mark>eingehalten</mark>
	JMW	40 μg/m³	max. JMW 19,2 μg/m³ in Linz-Römerberg	eingehalten
PM _{2,5}	JMW	25 µg/m³	(max. JMW 13,3 μg/m³ in Linz-Römerberg)	eingehalten

Tabelle 12: IG-L Überschreitungen Anlage 1

2.2.2 EU-Luftqualitätsrichtlinie 2008/50/EG

		Grenzwert	Bewertung
PM ₁₀	PM ₁₀ TMW	Max. 35 Tage > 50 μg/m³	eingehalten
1	(ab 2005)		
	PM ₁₀ JMW	40 μg/m³	eingehalten

Tabelle 13: Überschreitungen der Grenzwerte der EU-Luftqualitätsrichtlinie 2008/50/EG

Immissionssituation in Bezug auf die Beurteilungsschwellen (siehe Kap. 11.2.2.)

Bei den Messstellen, die ganzjährig betrieben wurden, lagen die Messstellen Steyregg-Au, Traun, Bad Ischl, Braunau Zentrum, Feuerkogel, Grünbach, Lenzing, Steyr, Vöcklabruck, Enzenkirchen und Zöbelboden bei PM_{10} unter der unteren Beurteilungsschwelle für den TMW (25 μ g/m³ als TMW max. 35x/Jahr). Die Messstellen Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Enns-Kristein und Wels lagen zwischen oberer (35 μ g/m³ als TMW max. 35 x/Jahr) und unterer Beurteilungsschwelle.

Beim Jahresmittelwert lagen alle ganzjährig betriebenen Messstellen unterhalb der unteren Beurteilungsschwelle von 20 µg/m³.

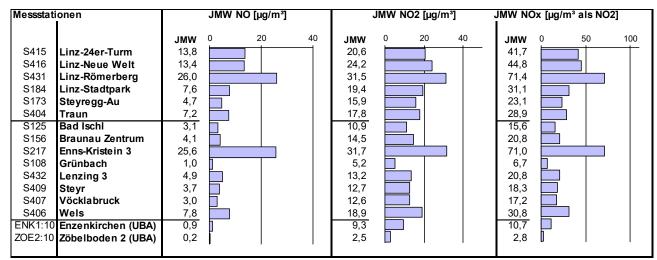
3. Stickstoffdioxid und Stickstoffmonoxid

Stickoxide entstehen bei jedem Verbrennungsvorgang. Die Bundesländer Luftschadstoff-Inventur 1990 - 2019¹ des Umweltbundesamtes weist im Jahr 2019 für Oberösterreich den Verkehrssektor mit einem Anteil von 47 Prozent als den größten Verursacher von NOx Emissionen aus. Die Industrieproduktion in Oberösterreich hatte einen Anteil von 27 Prozent.

Die beiden verkehrsnahen Messstellen Enns-Kristein an der A1 Westautobahn und Linz-Römerberg zeigen wie in den Vorjahren die höchsten Jahresmittelwerte für Stickstoffdioxid. Der Jahresmittelwert 2021 erreichte in Enns-Kristein 31,7 μg/m³ und in Linz-Römerberg 31,5 μg/m³.

Dies ist eine Reduktion von 14 Prozent an der Messstelle Enns-Kristein und von 25 Prozent an der Messstelle Linz-Römerberg im Vergleich zu 2019 vor der Corona Pandemie.

Dieser deutliche Rückgang der NO₂ Immissionen ist an den beiden verkehrsnahen Messstellen auf den verringerten Individualverkehr zurückzuführen, der an der Messstelle Enns-Kristein bei 89 % und bei der Messstelle Linz-Römerberg bei 87 % im Vergleich zu den Jahren 2018/2019 lag.


So werden im Jahr 2021 so wie auch im Jahr 2020 an den verkehrsnahen Messstellen Enns-Kristein und Linz-Römerberg sowohl der Grenzwert der EU-Luftqualitätsrichtlinie 2008/50/EG von 40 μg/m³ als auch der im IG-L festgesetzte Jahresmittelgrenzwert von 35 μg/m³ eingehalten.

An allen anderen Messstellen lag der Jahresmittelwert von Stickstoffdioxid deutlich unter dem Grenzwert des IG-L.

Im Jahr 2021 wurde an keiner Messstelle für Stickstoffdioxid ein Halbstundenmittelwert (HMW) über 200 μ g/m³ registriert. Die höchsten Halbstundenmittelwerte wurden mit 195 μ g/m³ an Messstelle Linz-Römerberg 30. März 2021 um 18:00 (MEZ) und 125 μ g/m³ in Enns-Kristein am 1. April 2021 um 19:00 (MEZ) gemessen. Erfahrungsgemäß treten hohe Halbstundenmittelwerte für NO₂ primär im Sommerhalbjahr, jeweils am späten Nachmittag nach einem sonnigen Tag auf. Im Jahr 2021 herrschten an den letzten Märztagen und am 1. April bereits sommerliche Temperaturen von über 20 Grad Celsius.

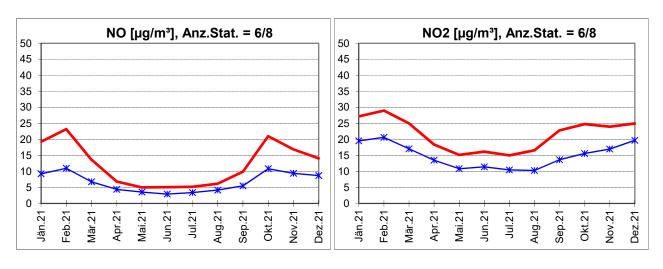
Der EU-Grenzwert für den Stundenmittelwert MW1 wurde eingehalten, da kein einziger Stundenmittelwert über 200 µg/m³ aufgetreten ist. Für den EU-Grenzwert sind jedoch 18 Überschreitungen pro Jahr zulässig.

3.1 Stickoxide NO, NO₂ und NOx - Messwerte und Auswertungen

NO₂: Grenzwert für den JMW: IG-L 35 µg/m³, EU 40 µg/m³

Der Jahresmittelwert wird nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Abbildung 12: Stationsvergleich Stickoxide NO, NO2 und NOx im Jahr 2021


Jahresbericht 2021 der Luftgüteüberwachung in Oberösterreich

¹⁾ Bundesländer Luftschadstoff-Inventur 1990 - 2019

		HMW Verfüg-		JMW		MAX HMW	MAX MW1	MAX MW3	MAX TMW
S	tickoxide 2021	barkeit	NO	NO ₂	NOx	NO ₂	NO ₂	NO ₂	NO ₂
		[%]	[µg/m³]	[µg/m³]	[µg/m³ als NO₂]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]
S415	Linz-24er-Turm	96	13,8	20,6	41,7	114	105	90	61
S416	Linz-Neue Welt	97	13,4	24,2	44,8	115	109	103	57
S431	Linz-Römerberg	97	26,0	31,5	71,4	195	157	141	63
S184	Linz-Stadtpark	97	7,6	19,4	31,1	96	93	87	60
S173	Steyregg-Au	96	4,7	15,9	23,1	78	66	64	39
S404	Traun	96	7,2	17,8	28,9	108	105	92	51
S125	Bad Ischl	97	3,1	10,9	15,6	62	59	54	30
S156	Braunau Zentrum	97	4,1	14,5	20,8	71	62	59	40
S217	Enns-Kristein 3	97	25,6	31,7	71,0	125	112	87	53
S108	Grünbach	97	1,0	5,2	6,7	55	50	41	21
S432	Lenzing 3	97	4,9	13,2	20,8	71	62	58	43
S409	Steyr	97	3,7	12,7	18,3	75	67	55	37
S407	Vöcklabruck	96	3,0	12,6	17,2	69	68	60	39
S406	Wels	96	7,8	18,9	30,8	100	100	82	48
S266	Aurolzmünster	96	12,0	18,1	36,4	101	89	78	47
S270	Leonding 2 *	54				73	69		34
S269	Marchtrenk 2 *	58				77	59		34
S268	Steyrermühl 4 *	54				73	58		23
ENK1:10	Enzenkirchen (UBA)	97	0,9	9,3	10,7	62	58	57	32
ZOE2:10	Zöbelboden 2 (UBA)	94	0,2	2,5	2,8	26	26	26	16
* keine ga	nzjährige Messung								

JMWs werden nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind. Überschreitungen des IG-L-Grenzwerts wären fett und grau hinterlegt, Überschreitungen des EU-Grenzwerts wären in Rot und grau hinterlegt dargestellt.

Tabelle 14: Messwerte Stickoxide NOx, NO und NO₂ im Jahr 2021

Mittel der Stationen im Raum Linz Mittel der Stationen außerhalb des Raums Linz Anz. Stat.: z. B. Anz. Stat. = 6/8 heißt, dass 6 Stationen im Raum Linz und 8 Stationen außerhalb gemittelt wurden. Linz: Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Steyregg-Au, Traun OÖ ohne Raum Linz: Bad Ischl, Braunau Zentrum, Enns-Kristein, Grünbach, Lenzing 3, Steyr, Vöcklabruck, Wels

Abbildung 13: Mittlerer Jahresgang der Monatsmittelwerte - NO und NO₂

3.1.1 Trend der Stickoxidbelastung

NO ₂ -Jahresmittelwerte	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Grenzwert EU	40	40	40	40	40	40	40	40	40	40	40
Grenzwert IG-L	35	35	35	35	35	35	35	35	35	35	35
Linz-24er-Turm	36	31	31	32	33	30	30	27	25,0	21,4	20,6
Linz-Neue Welt	32	30	29	30	32	29	29	29	27,9	23,8	24,2
Linz-Römerberg	51	50	45	46	48	46	46	43	42,1	32,6	31,5
Linz-Stadtpark	31	29	27	28	28	26	26	26	23,1	19,1	19,4
Steyregg-Au	23	23	22	19	20	20	21	17	17,5	16,2	15,8
Traun	26	25	24	23	24	21	21	21	20,1	17,6	17,8
Bad Ischl	16	16	17	15	16	15	15	13	12,4	10,0	10,8
Braunau Zentrum	22	21	21	17	18	20	22	19	17,7	13,2	14,4
Enns-Kristein	56	48	47	45	45	43	44	38	37,0	29,7	31,7
Grünbach	6	7	7	7	7	6	6	5	4,1	4,7	5,2
Lenzing	18	15	15	15	14	13	14	14		14,2	13,3
Steyr	18	19	18	17	17	15	16	15	14,3	11,7	12,7
Vöcklabruck	17	17	17	15	17	15	16	15	14,1	12,1	12,6
Wels	29	27	28	27	27	24	24	23	23,1	18,9	18,9
Enzenkirchen (UBA)	13	11	11	11	11	10	11	11	10,3	9,6	9,3
Zöbelboden 2 (UBA)	5	4	5	4	4	4	3	4		2,1	2,5

Überschreitungen des IG-L-Grenzwerts sind fett und grau hinterlegt, Überschreitungen des EU-Grenzwerts sind in Rot und grau hinterlegt dargestellt.

Tabelle 15: Stickstoffdioxid NO₂ - Jahresmittelwerte ab 2011 [µg/m³]

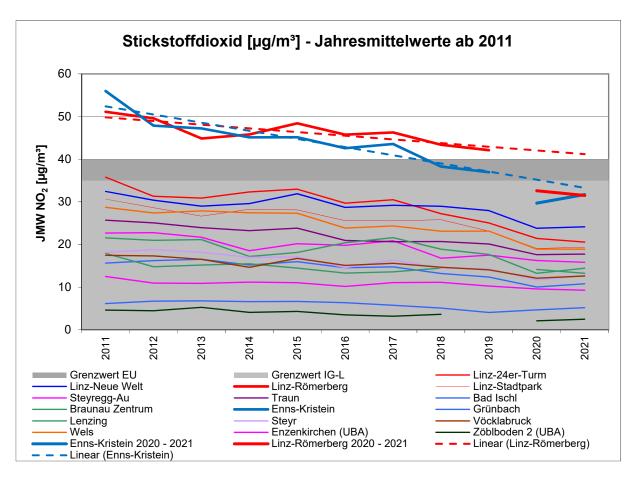


Abbildung 14: Trend der Stickstoffdioxid – Jahresmittelwerte

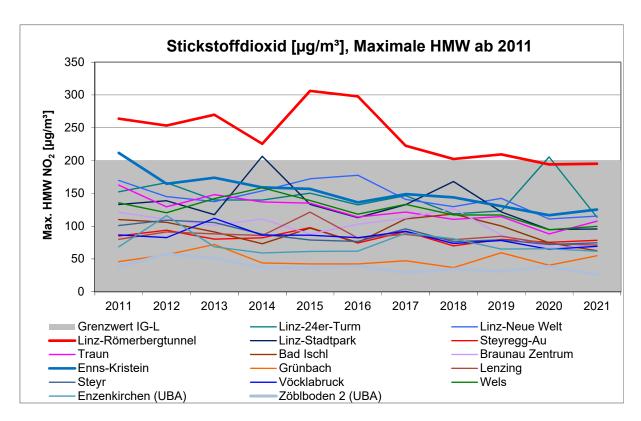


Abbildung 15: Trend der maximalen Halbstundenmittelwerte NO₂

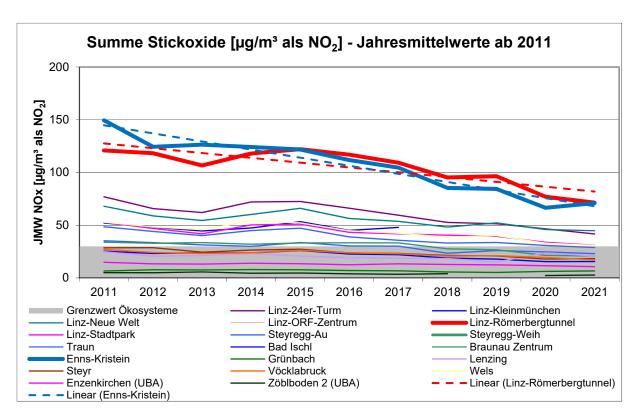
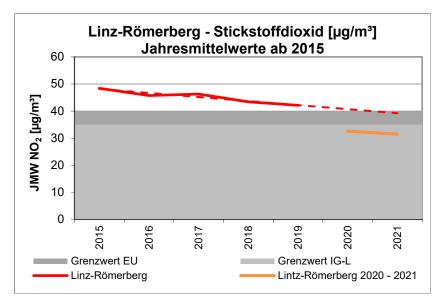
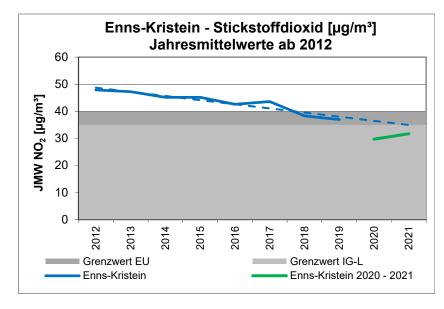



Abbildung 16: Trend der NOx-Jahresmittelwerte

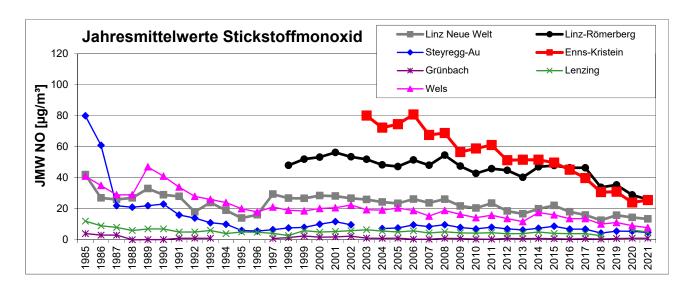
3.1.2 Auswirkungen der Corona Pandemie in den Jahren 2020 und 2021

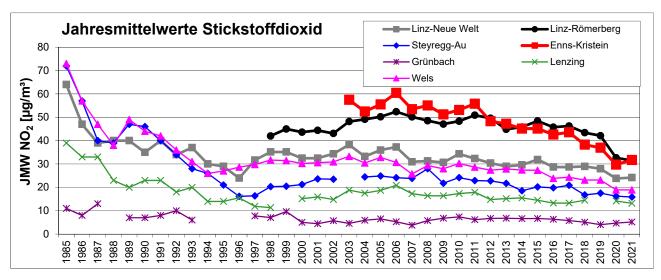
Die Corona Pandemie bewirkte an den verkehrsnahen Messstellen Enns-Kristein und Linz-Römerberg einen deutlichen Rückgang des Verkehrsvolumens, der sich entsprechend in den Immissionswerten für Stickstoffdioxid zeigt.


So verringerte sich der durchschnittliche tägliche Verkehr (DTV) an der Messstelle Linz Römerberg sowohl im Jahr 2020 als auch im Jahr 2021 auf 87 % im Vergleich zum Mittelwert des Verkehrsvolumens der Jahre 2018 und 2019. Die NO₂ Immissionen haben sich entsprechend der Verkehrsreduktion und angepasst an die Trendlinie der Messwerte von 2015 - 2019 ebenfalls reduziert.

Linz- Römer- berg	JMW NO2 [µg/m³]	D ⁻	ΓV
2018	43,4	18.869	
2019	42,1	19.270	
Mittelwert 2018 u		19.070	100%
2020	32,6	16.603	87 %
2021	31,5	16.576	87 %

Abbildung 17 und Tabelle 16: Stickstoffdioxid NO₂ - Jahresmittelwerte ab 2015 und durchschnittlicher täglicher Verkehr an der Messstelle Linz-Römerberg von 2018 - 2021


An der Messstelle Enns-Kristein hat sich das Verkehrsvolumen im Jahr 2020 auf 79 % reduziert und ist im Jahr 2021 im Vergleich zum Mittelwert der Jahren 2018 und 2019 wieder auf 89 % gestiegen. Die Änderung der Verkehrsvolumina spiegelt sich auch an der Messstelle Enns-Kristein in den NO₂ Immissionen analog der Trendlinie und dem Verkehrsvolumen wider.



Enns- Kris- tein	JMW NO2 [µg/m³]	D.	ΓV
2018	38,3	72.346	
2019	37,0	72.308	
Mittelwert 2018 u		72.327	100%
2020	29,7	56.861	79 %
2021	31,7	64.343	89 %

Abbildung 18 und Tabelle 17: Stickstoffdioxid NO₂ - Jahresmittelwerte ab 2012 und durchschnittlicher täglicher Verkehr an der Messstelle Enns-Kristein von 2018 - 2021

3.1.3 Langzeitvergleich Stickoxide

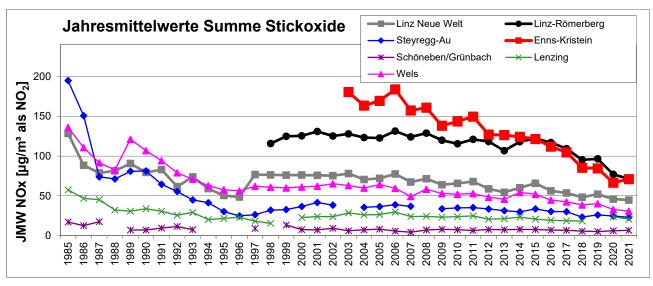


Abbildung 19: Langzeitvergleich Stickoxide

3.2 Einhaltung von Grenzwerten - Stickoxide

3.2.1 Immissionsschutzgesetz - Luft

Anlage 1a: Immissionsgrenzwerte

Der Grenzwert für den NO₂-Jahresmittelwert inklusive Toleranzmarge wurde im Jahr 2021 an allen Stationen eingehalten.

Der Grenzwert für den NO₂-Halbstundenmittelwert wurde im Jahr 2021 ebenso an allen Messtationen eingehalten.

2021		Grenz- wert		Bewertung
NO ₂	JMW	30 µg/m³	eingehalten (max. JMW 31,7 μg/m³ an der Station Enns-Kristein 3)	eingenalten
NO ₂	HMW	200 μg/m³	eingehalten (max. HMW 195 μg/m³ an der Station Linz-Römerberg, am 30.3.2021 um 18:00 MEZ	

Tabelle 18: IG-L Überschreitungen Anlage 1a

Anlage 4: Alarmwert für NO₂

Alarmwert 400 μg/m³ eingehalten: Der maximale Dreistundenmittelwert für NO₂ betrug am 26. März 2021 141 μg/m³ an der Station Linz-Römerberg.

Anlage 5a: Zielwert NO₂

Zielwert 80 μg/m³ **eingehalten**: Der maximale Tagesmittelwert für NO₂ wurde am 26. März 2021 mit 63 μg/m³ an der Station Linz-Römerberg gemessen.

Immissionsgrenzwert für NOx und Zielwert für NO₂ zum Schutz der Ökosysteme und der Vegetation

Der Ökosystemgrenzwert für NOx gilt nur für Messungen an Standorten abseits von Ballungsräumen und sonstigen Emissionsquellen, also für die Hintergrundstationen. An diesen wurde er eingehalten.

Der Zielwert für den NO_2 TMW (80 $\mu g/m^3$ - identisch mit dem Zielwert für die menschliche Gesundheit) wurde an allen Messstellen eingehalten.

Stickoxide	Grenzwert	NOx JMW (als NO ₂)	30 μg/m³*	eingehalten an den Hintergrundmessstellen Bad Ischl, Braunau Zentrum, Feuerkogel, Grünbach, Lenzing 3, Steyr, Vöcklabruck und Steyregg-Au sowie in Traun überschritten an allen Stationen in Linz, Enns-Kristein, Wels und Aurolzmünster						
*) Der Grenzwe	*) Der Grenzwert gilt nur für Messungen an Standorten abseits von Ballungsräumen und sonstigen Emissionsquellen									
Stickstoffdioxid	Zielwert	NO ₂ TMW	80 μg/m³	eingehalten an allen Messstellen aufgrund der Corona Pandemie (im Ballungsraum bei der verkehrsnahen Messstelle Linz-Rö- merberg betrug der TMW am 26.3.2021 63 μg/m³)						

Tabelle 19: Einhaltung des Immissionsgrenzwertes für NOx und Zielwertes für NO₂ zum Schutz der Ökosysteme und der Vegetation

3.2.2 EU-Luftqualitätsrichtlinie 2008/50/EG

		Grenzwert	Bewertung
Cticketeffdionid	NO ₂ MW1 nicht gleitend		eingehalten
Stickstoffdioxid und Stickoxide	NO ₂ JMW (ab 2010)	40 ug/m³	eingehalten
2021	NOx JMW (als NO ₂)	30 μg/m³ (zu messen nur an Standor- ten abseits von Ballungsräumen, be- bauten Gebieten und Straßen)	An den Hintergrundstationen <mark>eingehalten</mark>

Tabelle 20: Überschreitungen der NO₂ und NOx Grenzwerte der EU-Luftqualitätsrichtlinie 2008/50/EG

Immissionssituation in Bezug auf die Beurteilungsschwellen

Die NO₂-MW1 Werte lagen an der Station Linz-Römerberg zwischen der oberen Beurteilungsschwelle (mehr als 18-mal über 140 μ g/m³) und der unterer Beurteilungsschwelle (mehr als 18-mal über 100 μ g/m³), an den übrigen Stationen lag er unter der unteren Beurteilungsschwelle.

Der NO_2 -JMW lag an den Stationen Linz-Römerberg und Enns-Kristein zwischen der oberen Beurteilungsschwelle (32 μ g/m³) und unterer Beurteilungsschwelle (26 μ g/m³). Alle NO_2 -JMWs der übrigen Stationen lagen unter der unteren Beurteilungsschwelle.

Der NOx-JMW für Vegetationsschutz lag im Ballungsraum Linz (Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Traun) und in Enns-Kristein, in Wels sowie in Aurolzmünster über der oberen Beurteilungsschwelle von 24 µg/m³ NOx als NO₂. An den Stationen Steyregg-Au, Braunau Zentrum und Lenzing 3 zwischen der oberen und unteren Beurteilungsschwelle (19,5 µg/m³ NOx als NO₂). Die Stationen Bad Ischl, Grünbach, Steyr und Vöcklabruck lagen unter der unteren Beurteilungsschwelle.

4. Ozon

Das Jahr 2021 zählt zu den durchschnittlich ozonbelasteten Jahren und liegt im Mittel der jährlichen Ozonbelastung. Der Jahresmittelwert lag an der langjährigen Messstelle Grünbach bei 69,7 μ g/m³. Bei den bisher ozonreichsten Jahren 2003 und 2018 lag der Jahresmittelwert an der Station Grünbach bei 80,1 μ g/m³ im Jahr 2018 und bei 79 μ g/m³ im Jahr 2003.

Die Informationsschwelle für Ozon von 180 μg/m³ als Einstundenmittelwert wurde im Jahr 2021 nicht erreicht. Der höchste Einstundenmittelwert für Ozon lag bei 160 μg/m³ an der Messtelle Traun.

Der Zielwert für den Schutz der menschlichen Gesundheit ist seit 2010 mit 120 µg/m³ als 8-Stundenmittelwert eines Tages definiert, der im Mittel über 3 Jahre an höchstens 25 Tagen pro Kalenderjahr überschritten werden darf. Im Jahr 2021 wurde der Zielwert an allen Messstellen eingehalten.

Nur an der Messstelle Feuerkogel, die auf einer Seehöhe von 1602 m liegt, wurde der Zielwert nicht eingehalten und es traten mehr als 25 Überschreitungstage im 3-Jahresmittel auf. Allerdings sind Berggipfel entsprechend den Standortkriterien der Ozonmesskonzeptverordnung ausgenommen.

Als langfristiges Ziel für das Jahr 2020 sind 120 µg/m³ als höchster 8-Stundenmittelwert eines Tages während eines Kalenderjahres festgelegt. Dieses langfristige Ziel für das Jahr 2020 wird im Jahr 2021 an allen ganziährig betriebenen Messstellen überschritten.

Der Zielwert für den Vegetationsschutz ab dem Jahr 2010 mit einem AOT40-Wert unter 18.000 µg/m³ wurde im 5-Jahresmittel an den Messstellen Linz-Neue Welt, Linz-Stadtpark, Bad Ischl, Braunau Zentrum, Lenzing, Steyr, Wels und Zöbelboden unterschritten. An den Messstellen Traun, Feuerkogel, Grünbach und Enzenkirchen wurde der Zielwert überschritten.

Das langfristige Ziel für den Vegetationsschutz für das Jahr 2020 mit einem AOT40-Wert von $6.000~\mu g/m^3$ wurde im Jahr 2021 an allen Messstationen weit verfehlt.

4.1 Ozon (O₃) - Messwerte und Auswertungen

Ozon 2021		Verfügbar-	JMW	MAX HMW	MAX	MW1	MAX MW8	
		keit	C)3	O ₃	Anzahl	O ₃	Anzahl Tage
		[%]	[µg/m³]	[µg/m³] [µg/m³]		> 180 µg/m³	[µg/m³]	> 120 µg/m³
S416	Linz-Neue Welt	97	40,0	145	144	0	136	3
S184	Linz-Stadtpark	97	45,3	151	149	0	140	6
S404	Traun	94	44,0	162	160	0	149	6
S125	Bad Ischl	97	47,4	142	140	0	139	6
S156	Braunau Zentrum	96	41,6	155	154	0	146	8
S235	Feuerkogel **	96	85,7	153	151	0	143	17
S108	Grünbach	96	69,7	153	141	0	135	8
S432	Lenzing 3	96	47,2	150	144	0	137	3
S409	Steyr	97	45,5	154	152	0	146	8
S406	Wels	96	43,2	156	151	0	147	6
ENK1:10	Enzenkirchen (UBA)	96	57,8	150	150	0	142	7
ZOE2:10	Zöbelboden 2 (UBA)	95	67,3	150	149	0	139	11

^{**} In den Standortkriterien der Ozonmesskonzeptverordnung, die im § 9 Abs. 4 auf den Anhang VIII der Luftqualitäts-RL verweist, sind Berggipfel ausgenommen. Es wird daher bei einer Überschreitung der Informations- oder Alarmschwelle am Feuerkogel keine Ozonwarnung ausgerufen.

Tabelle 21: Messwerte für Ozon im Jahr 2021

JMWs werden nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Überschreitungen der Alarmschwelle des Ozongesetzes wären rot und grau hinterlegt, Überschreitungen der Informationsschwelle des Ozongesetzes wären fett und grau hinterlegt.

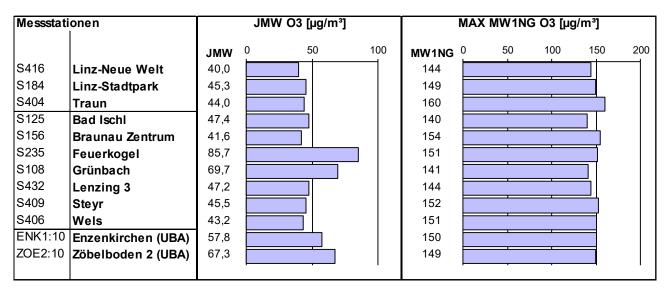
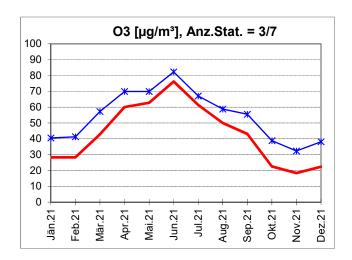



Abbildung 20: Stationsvergleich Ozon O₃ im Jahr 2021

Mittel der Stationen im Raum Linz Mittel der Stationen außerhalb des Raums Linz Anz. Stat.: z. B. Anz. Stat. = 3/7 heißt, dass 3 Stationen im Raum Linz und 7 Stationen außerhalb gemittelt wurden. Linz: Linz-Neue Welt, Linz-Stadtpark, Traun

OÖ ohne Raum Linz: Bad Ischl, Braunau Zentrum, Feuerkogel, Grünbach, Lenzing 3, Steyr, Wels

Abbildung 21: Mittlerer Jahresgang der Monatsmittelwerte – Ozon

Überschreitungen des Zielwerts für den Schutz der menschlichen Gesundheit ab dem Jahr 2010 und langfristiges Ziel für das Jahr 2020

Der Zielwert für den Schutz der menschlichen Gesundheit ab dem Jahr 2010 ist mit 120 μ g/m³ als höchster 8-Stundenmittelwert eines Tages festgelegt, der im Mittel über 3 Jahre an höchstens 25 Tagen pro Kalenderjahr überschritten werden darf.

Der Dreijahresmittelwert wurde an der Messstelle Feuerkogel nicht eingehalten und es traten mehr als 25 Überschreitungstage im 3-Jahresmittel auf.

Als langfristiges Ziel für das Jahr 2020 waren 120 μg/m³ als höchster 8-Stundenmittelwert eines Tages während eines Kalenderjahres festgelegt. Dieses Ziel für das Jahr 2020 wird im Jahr 2021 an allen ganzjährig betriebenen Messstellen überschritten.

2021	Linz- Neue Welt	Linz- Stadt- park	Traun	Bad Ischi	Brau- nau Zent- rum	Feuer- kogel**	Grün- bach	Lenzing 3	Steyr	Wels	Enzen- kirchen (UBA)	Zöbelbo- den 2 (UBA)
	S416	S184	S404	S125	S156	S235	S108	S432	S409	S406	ENK1:10	ZOE2:10
Jänner	-	-	-	-	i	-	i	-	-	-	-	-
Februar	-	-	-	-	-	-	-	-	-	-	-	-
März	-	-	-	-	-	-	i	-	-	-	•	-
April	-	-	-	-	•	2	•	-	-	-	-	1
Mai	-	-	-	-	•	-	•	-	-	-	-	-
Juni	2	3	3	5	5	9	5	3	6	4	4	10
Juli	1	2	3	1	2	4	1	-	2	2	2	-
August	-	1	-	-	1	2	2	-	-	-	1	-
September	-	-	-	-	-	-	-	-	-	-	-	-
Oktober	-	-	-	-	-	-	-	-	-	-	-	-
November	-	-	-	-	-	-	i	-	-	-	•	-
Dezember	-	-	-	-	-	-	1	-	-	•	-	-
Jahr	3	6	6	6	8	17	8	3	8	6	7	11
3-Jahres- intervall	10	12	17	12	16	29	15	10	13	15	21	19

Überschreitungen des Zielwertes für den Gesundheitsschutz sind rot dargestellt. Zielwert: mehr als 25 Tage mit MW8 > als 120 µg/m³ im Dreijahresmittel

Tabelle 22: Ozon - Zielwertüberschreitungen für den Schutz der menschlichen Gesundheit nach dem Ozongesetz [Anzahl der Tage mit MW8 > 120 µg/m³]

Überschreitungen des Zielwerts für den Vegetationsschutz ab dem Jahr 2010 und langfristiges Ziel für das Jahr 2020

Der AOT40-Wert des Ozongesetzes und der EU-Ozonrichtlinie ist ein Maß für die Ozondosis, der Pflanzen in der Vegetationsperiode ausgesetzt sind. Der AOT40 wird ausgedrückt in $\mu g/m^3 h$ und bedeutet die Summe der Differenz zwischen Konzentrationen über 80 $\mu g/m^3$ (=40 ppb) als Einstundenmittelwert und 80 $\mu g/m^3$ während einer gegebenen Zeitspanne unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 Uhr morgens und 20 Uhr abends MEZ an jedem Tag. Für die Berechnung des AOT40 sind 90 Prozent der Einstundenmittelwerte des Bezugszeitraums erforderlich.

Zielwert für den Vegetationsschutz ab dem Jahr 2010 ist ein AOT von 18.000 μg/m³h im Mittel über 5 Jahre. Als langfristiges Ziel für das Jahr 2020 sind 6.000 μg/m³h festgelegt.

Der Zielwert für den Vegetationsschutz mit einem AOT unter 18.000 µg/m³ ab dem Jahr 2010 wurde im 5-Jahresmittel an den Messstellen Linz-Neue Welt, Linz-Stadtpark, Bad Ischl, Braunau Zentrum, Lenzing, Steyr, Wels und Zöbelboden unterschritten. An den Messstellen Traun, Feuerkogel, Grünbach und Enzenkirchen wurde der Zielwert überschritten.

Das langfristige Ziel für den Vegetationsschutz für das Jahr 2020 von $6.000~\mu g/m^3$ wurde im Jahr 2021 an allen Messstationen weit verfehlt.

2021	Linz- Neue Welt	Linz- Stadt- park	Traun	Bad Ischl	Brau- nau Zent- rum	Feuer- kogel	Grün- bach	Lenzing	Steyr	Wels	Enzen- kirchen (UBA)	Zöbel- boden 2 (UBA)
	S416	S184	S404	S125	S156	S235	S108	S432	S409	S406	ENK1:10	ZOE2:10
AOT40 Mai-Juli	9.848	12.946	14.806	10.903	12.460	15.358	11.959	9.533	14.140	13.243	12.483	13.794
% des Zielwerts (18000)	55%	72%	82%	61%	69%	85%	66%	53%	79%	74%	69%	77%
% des Langzeitziels für das Jahr 2020 (6000)	164%	216%	247%	182%	208%	256%	199%	159%	236%	221%	208%	230%
5-Jahresmittelwert	13.043	15.350	19.380	13.266	17.235	20.260	19.060	15.650	16.932	17.335	19.840	17.908

Überschreitungen des Zielwertes für den Vegetationsschutz sind fett dargestellt.

Tabelle 23: Ozon – Überschreitungen des Zielwerts für die Vegetation

^{**} In den Standortkriterien der Ozonmesskonzeptverordnung, die im § 9 Abs. 4 auf den Anhang VIII der Luftqualitäts-RL verweist, sind Berggipfel ausgenommen. Es wird daher bei einer Überschreitung der Informations- oder Alarmschwelle am Feuerkogel keine Ozonwarnung ausgerufen. Die Überschreitung des Zielwerts für den Gesundheitsschutz an der Messstelle Feuerkogel ist daher nicht rot dargestellt.

4.1.1 Langzeitvergleich Ozon

Jahresmittelwert

Der Jahresmittelwert des Jahres 2021 liegt im Mittel der Ozonbelastung. Die ozonreichsten Jahre seit Messbeginn waren die Jahre 2003 und 2018.

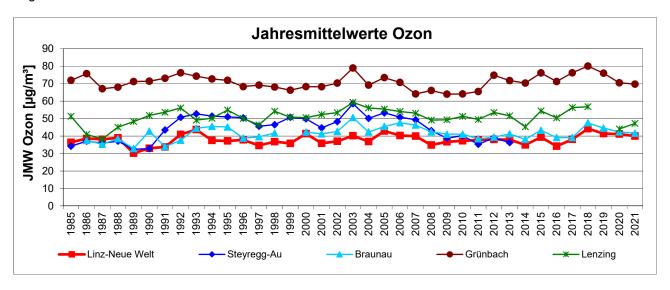


Abbildung 22: Langzeitvergleich Jahresmittelwerte Ozon

Informationsschwelle

1982 wurde mit der Messung von Ozon begonnen (ursprünglich nur 3 Stationen). 1992 trat das Ozongesetz BGBI. Nr. 210/1992 in Kraft. Bis 30. Juni 2003 enthielt es Grenzwerte für die Vorwarnstufe, Auslösewerte für die Warnstufen 1 und 2 und Grenzwerte für die Warnstufen 1 und 2.

Der Grenzwert der Warnstufe 1 wurde in keinem Jahr überschritten. Der Grenzwert der Vorwarnstufe von 200 μg/m³ als MW3 wurde im Schnitt in jedem 2. bis 3. Jahr überschritten. Die meisten Werte über 200 μg/m³ traten im extrem heißen Sommer 1983 auf, also noch vor dem Zustandekommen des Ozongesetzes.

1992 wurde die EU-Richtlinie 92/72/EWG erlassen. Sie enthielt eine Informationsschwelle von 180 μ g/m³ und eine Alarmschwelle von 360 μ g/m³, jeweils als MW1. 2002 wurde die Alarmschwelle auf 240 μ g/m³ gesenkt (Richtlinie 2002/3/EG). 2003 wurde das Ozongesetz an diese EU-Richtlinie angepasst. Seither gibt es statt der Warnstufen die Informations- und Alarmschwelle.

Die Alarmschwelle des derzeitigen Gesetzes wäre in den letzten 20 Jahren nie überschritten worden.

Die Informationsschwelle wäre seit dem Jahr 2000 an folgenden Tagen überschritten worden bzw. wurde überschritten:

Jahr	Tag	Stationen
2000	20.6.2000	Grünbach
	21.6.2000	Grünbach
	22.6.2000	Grünbach, Schöneben, Traun, Steyr, Linz-Neue Welt, Steyregg
2001	27.6.2001	Steyregg
2002	18.6.2002	Traun
2003	7.5.2003	Bad Ischl
	5.6.2003	Enzenkirchen
	16.7.2003	Grünbach, Bad Ischl
	8.8.2003	Braunau Zentrum
	10.8.2003	Lenzing, Bad Ischl, Braunau Zentrum

Jahr	Tag	Stationen
	13. 8.2003	Traun, Steyr, Linz, Steyregg, Lenzing, Schöneben, Grünbach, Bad Ischl, Braunau Zentrum, Enzenkirchen, Zöbelboden (= alle Stationen)
	14.8.2003	
	22.8.2003	Grünbach
	23.8.2003	Steyregg, Schöneben, Grünbach
2004		keine
2005	29.7.2005	Enzenkirchen
2006	16.6.2006	Grünbach, Braunau Zentrum, Enzenkirchen
	20.7.2006	Bad Ischl, Steyr, Lenzing, Zöbelboden
	21.7.2006	Grünbach, Bad Ischl, Traun, Steyr, Braunau Zentrum, Linz, Steyregg, Lenzing, Enzenkirchen, Zöbelboden
	27.7.2006	Lenzing, Zöbelboden
	28.7.2007	Grünbach, Enzenkirchen
2007	16.7.2007	Traun, Steyregg
	17.7.2007	Steyr, Enzenkirchen
	18.7.2007	Steyr
2008		keine
2009		keine
2010	3.7.2010	Traun, Linz-Neue Welt
2011		keine
2012		keine
2013	3.8.2013	Enzenkirchen
2014		keine
2015	17.7.15	Traun, Wels, Grünbach, Enzenkirchen
	8.8.15	Braunau Zentrum
	12.8.15	Traun
	13.8.15	Steyr
	14.8.15	Traun, Wels
	31.8.15	Grünbach
2016		keine
2017	22.06.2017	Braunau Zentrum, Steyr
2018		keine
2019	26.07.2019	Wels
2020		Keine
2021		Keine

Tabelle 24: Überschreitungen der Informationsschwelle von MW1 > 180 $\mu g/m^3$ ab dem Jahr 2000

Tage mit Überschreitungen des Zielwerts für den Schutz der menschlichen Gesundheit

Ab 2010 gilt als Zielwert für den Schutz der menschlichen Gesundheit der maximale 8-Stundenmittelwert des Tages, der im Mittel über 3 Jahre an nicht mehr als 25 Tagen pro Jahr überschritten werden darf.

Aus der Reihe der Jahre sticht der "Ozon"-Sommer 2003 hervor, der sehr lange gedauert hat und daher durch besonders viele Überschreitungen des Zielwerts auffällt. Sogar im 3-Jahresmittel waren mit Ausnahme von Linz damals alle Stationen über der zulässigen Anzahl.

	S416	S184	S417	S404	S125	S156	S235	S108	S418 / S432	S420	S409	S406	ENK1:1 0	ZOE2: 10
Jahr	Linz Neue Welt	Linz- Stadt- park	Stey- regg- Weih	Traun	Bad Ischl	Brau- nau Zent- rum	Feuer- kogel	Grün- bach	Len- zing	Schön- eben	Steyr	Wels	Enzen- kirchen (UBA)	Zöbel- boden (UBA)
1984	15		20						23	45				
1985	17		15						31	39				
1986	20		26			12		56	2	61				
1987	19		15			12			8	33				
1988	16		22			18			23	43				
1989	5		10			6			16	49				
1990	16		8	24		28			33	38				
1991	8		29	24	16	5			31	43				
1992	36		57	48	34	10			47	61	21			
1993	30		49	32	28	34			29	59	33			
1994	33		57	55	45	43			45	53	38			
1995	23		51	37	22	36			38	44	25			
1996	17		29	22	14	13		39	16	33	13			
1997	13		16	18	9	10		44	9	21	7			
1998	17		25	27	14	22		33	23	37	15			
1999	6		31	10	13	11		39	5	12	8			
2000	20		47	32	18	37		71	17	27	14			
2001	10		28	36	14	23		53	25	27	20			
2002	23		33	36	18	27		42	25	34	16			
2003	29		84	65	69	74		100	71	90	43		93	95
2004	10		30	19	15	22		34	29	25	13		23	33
2005	11		28	19	18	19		52	22	45	10		37	52
2006	16		36	23	29	31		49	27	34	24		43	41
2007	18		31	27	16	31		43	23	21	22		37	39
2008	7			16	7	20		19	11	18	15		19	23
2009	6			14	7	18		28	6	16	10		20	34
2010	15			20	19	21		36	15	18	15		27	29
2011	7			25	18	17		24	13	20	11	15	22	26
2012	7			13	16	8		39	13	12	10	15	21	21
2013	14			24	24	22		28	19		19	20	26	32
2014	8	8		10	10	14		22	8		6	10	16	19
2015	35	38		34	24	38	56	49	36		35	38	41	51
2016	3	4		13	2	9	30	21	10		5	8	15	12
2017	7	13		21	9	16	29	29	13		23	11	19	18
2018	23	28		48	27	43	66	57	36		31	38	59	50
2019	16	19		32	21	25	44	27	21		22	30	33	28
2020	10	10		12	10	14	27	11	6		10	4	22	17
2021	3	6		6	6	8	17	8	3		8	6	7	11
Mittel 2019 - 2021	10	12		17	12	16	29	15	10		13	15	21	19

Tabelle 25: Ozon-Überschreitungen des Zielwerts für den Schutz der menschlichen Gesundheit (120 $\mu g/m^3$ als MW8 an mehr als 25 Tagen im 3-Jahresmittel)

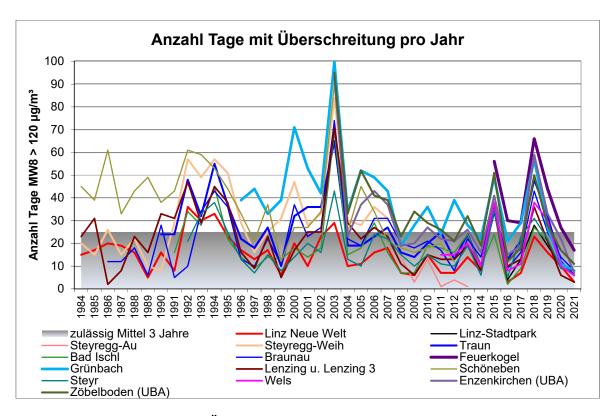


Abbildung 23: Anzahl der Tage mit Überschreitungen pro Jahr von 120 µg/m³ als höchster 8-Stundenmittelwert eines Tages

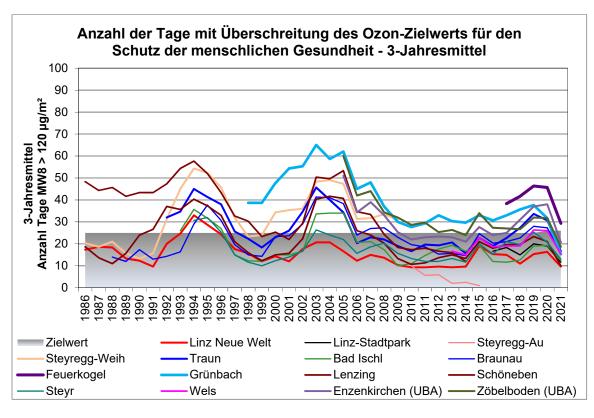


Abbildung 24: 3-Jahresmittel der Ozon-Zielwertüberschreitungen für den Schutz der menschlichen Gesundheit nach dem Ozongesetz

Überschreitungen der Ozon-Zielwerte für den Vegetationsschutz (als AOT40)

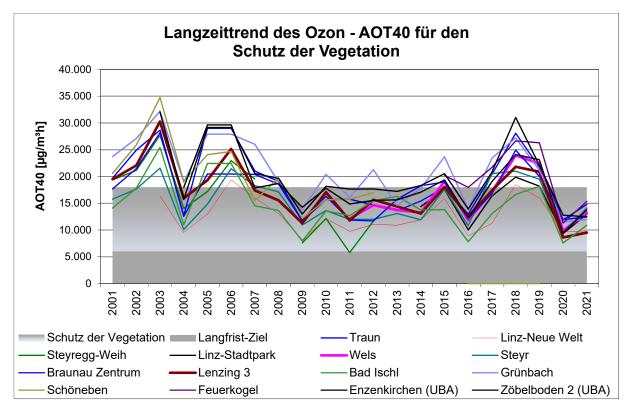


Abbildung 25: Langzeittrend AOT40 (Mai bis Juli) für den Schutz der Vegetation

4.2 Einhaltung von Grenzwerten - Ozon

Ozongesetz BGBI. Nr. 210/1992 idgF

Anlage 1

Überschreitungen der Alarmschwelle (240 µg/m³ als nicht gleitender MW1)

Eingehalten: Im Jahr 2021 trat keine Überschreitung der Alarmschwelle auf.

Überschreitungen der Informationsschwelle (180 µg/m³ als nicht gleitender MW1)

Eingehalten: Im Jahr 2021 trat keine Überschreitung der Informationsschwelle auf.

Anlage 2

Überschreitungen des Zielwerts für den Gesundheitsschutz

Zielwert für den Gesundheitsschutz: $120 \,\mu g/m^3$ als MW8 aus MW1 dürfen im Mittel über 3 Jahre an nicht mehr als 25 Tagen im Jahr überschritten werden:

Dieser Zielwert wurde an der Messstelle Feuerkogel im Dreijahresmittel überschritten. Da in den Standortkriterien der Ozonmesskonzeptverordnung, die im § 9 Abs. 4 auf den Anhang VIII der Luftqualitäts-RL verweist, Berggipfel ausgenommen sind, wurde im Jahr 2021 der Zielwert für den Gesundheitsschutz eingehalten.

Überschreitungen des langfristigen Zielwerts für das Jahr 2020 für den Gesundheitsschutz

Als langfristiges Ziel für das Jahr 2020 wurden 120 μg/m³ als höchster 8-Stundenmittelwert eines Tages während eines Kalenderjahres festgelegt. Dieses Ziel für das Jahr 2020 wird im Jahr 2021 an allen ganzjährig betriebenen Messstellen nicht eingehalten.

Überschreitungen des Zielwerts zum Schutz der Vegetation

Als langfristiges Ziel für den Vegetationsschutz ab dem Jahr 2020 wurde ein AOT von 6.000 μg/m³h im Mittel über 5 Jahre festgelegt. Dieses langfristige Ziel für den Schutz der Vegetation wurde an allen Messstellen weit verfehlt und damit nicht eingehalten.

EU-Luftqualitätsrichtlinie 2008/50/EG - Anhang VII Zielwerte und langfristige Ziele für Ozon Die Bestimmungen entsprechen dem Ozongesetz.

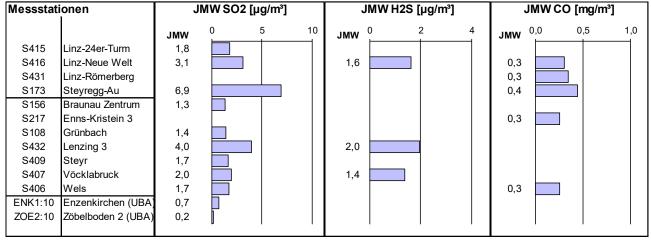
5. Schwefeldioxid, Schwefelwasserstoff, Kohlenmonoxid

Die SO₂-Grenzwerte (HMW < 200 μg/m³, TMW < 120 μg/m³) wurden an allen Messstellen eingehalten.

Für Schwefelwasserstoff H_2S gibt es keinen Grenzwert. Eine Überschreitung des Halbstundenmittelwertes von 20 $\mu g/m^3$ dient als Orientierungswert für eine Geruchsbelästigung. In Lenzing wurde im Jahr 2021 dieser Wert 1038-mal überschritten.

Bei Kohlenmonoxid blieben alle Messwerte deutlich unter dem Grenzwert (MW8 < 10 mg/m³).

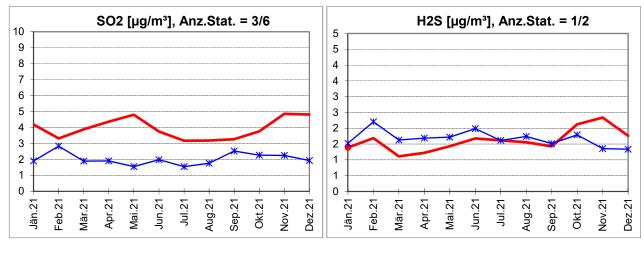
5.1 Schwefeldioxid SO₂, Schwefelwasserstoff H₂S und Kohlenmonoxid CO – Messwerte und Auswertungen

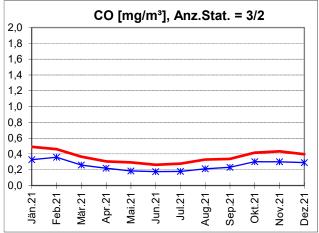

Sch	wefeldioxid,			SO ₂			H	₂S		СО		
Schwefe	elwasserstoff und nlenmonoxid	JMW	MAX TMW	MAX MW3	MAX MW1	MAX HMW	JMW	MAX HMW	JMW	MAX MW8	MAX HMW	
	2021	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[µg/m³]	[mg/m³]	[mg/m³]	[mg/m³]	
S415	Linz-24er-Turm	1,8	13,5	77,6	84,1	93,8						
S416	Linz-Neue Welt	3,1	10,4	39,5	57,6	76,1	1,6	8,6	0,3	1,5	4,3	
S431	Linz-Römerberg								0,3	2,3	3,7	
S173	Steyregg-Au	6,9	30,4	56,5	83,1	101,9			0,4	2,0	4,0	
S156	Braunau Zentrum	1,3	2,9	4,9	7,9	11,2						
S217	Enns-Kristein 3								0,3	0,9	1,4	
S108	Grünbach	1,4	3,0	8,9	14,2	17,2						
S432	Lenzing 3	4,0	33,3	101,8	171,1	198,7	2,0	160,9				
S409	Steyr	1,7	4,0	5,3	5,9	6,2						
S407	Vöcklabruck	2,0	4,8	17,4	33,1	44,1	1,4	18,8				
S406	Wels	1,7	3,8	5,8	7,9	8,9			0,3	0,9	1,9	
ENK1:10	Enzenkirchen (UBA)	0,7	4,5	22,4	33,6	35,8						
ZOE2:10	Zöbelboden 2 (UBA)	0,2	1,6	3,4	3,5	3,5						
Ansfelden,	Ansfelden, Steyrermühl 4 und Vöcklamarkt waren keine ganzjährigen Messungen.											

JMWs werden nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Tabelle 26: Messwerte für SO₂, H₂S und CO im Jahr 2021

	S415	S416	S173	S156	S108	S432	S409	S407	S406	ENK1:1 0	ZOE2:10
SO ₂ [µg/m³]	Linz- 24er- Turm	Linz- Neue Welt	Stey- regg- Au	Brau- nau Zent- rum	Grün- bach	Len- zing 3	Steyr	Vöckla- bruck	Wels	Enzen- kirchen (UBA)	Zöbel- boden 2 (UBA)
JMW 2021	1,8	3,1	6,9	1,3	1,4	4,0	1,7	2,0	1,7	0,7	0,2
Wintermittelwert Okt. 19-März 20	1,6	2,9	5,8	1,2	1,3	6,0	1,6	2,1	1,1	0,9	0,2
Wintermittelwert Okt.20-März 21	2,0	3,7	8,4	1,2	1,5	4,1	2,6	2,0	1,9	1,0	0,4
Grenzwert	20	20	20	20	20	20	20	20	20	20	20

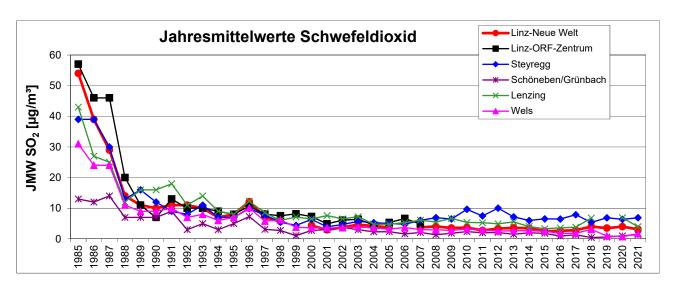

Tabelle 27: Schutz der Ökosysteme und der Vegetation - Wintermittelwerte SO₂

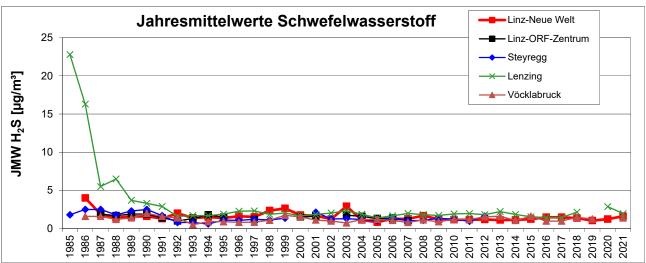


Ansfelden, Steyrermühl 4 und Vöcklamarkt: keine ganzjährige Messung

Der Jahresmittelwert wird nur gebildet, wenn mindestens 90 Prozent der HMWs vorhanden sind.

Abbildung 26: Stationsvergleich SO₂, H₂S und CO im Jahr 2021





Mittel der Stationen im Raum Linz Mittel der Stationen außerhalb des Raums Linz Anz. Stat.: z. B. Anz. Stat. = 3/7 heißt, dass 3 Stationen im Raum Linz und 7 Stationen außerhalb gemittelt wurden. Linz: Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Steyregg-Au OÖ ohne Raum Linz: Braunau Zentrum, Enns-Kristein, Grünbach, Lenzing 3, Steyr, Vöcklabruck, Wels

Abbildung 27: Mittlerer Jahresgang der Monatsmittelwerte – Schwefeldioxid, Schwefelwasserstoff und Kohlenmonoxid

5.1.1 Langzeitvergleich Schwefeldioxid, Schwefelwasserstoff und Kohlenmonoxid

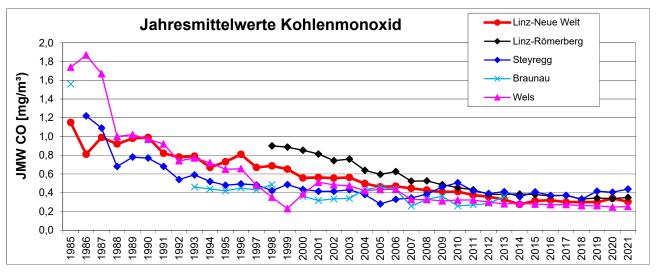


Abbildung 28: Langzeitvergleich Jahresmittelwerte Schwefeldioxid, Schwefelwasserstoff und Kohlenmonoxid

5.2 Einhaltung von Grenzwerten – Schwefeldioxid und Kohlenmonoxid

Für **Schwefelwasserstoff H₂S** gibt es keinen Grenzwert. Eine Überschreitung des Halbstundesmittelwertes von 20 μg/m³ dient als Orientierungswert für eine Geruchsbelästigung.

5.2.1 Immissionsschutzgesetz – Luft

Anlage 1a: Immissionsgrenzwerte

2021		Grenzwert		Bewertung
SO₂	HMW	200 μg/m³	eingehalten (maximaler HMW 198,7 μg/m³ in Lenzing 3)	<mark>eingehalten</mark> (3 HMWs pro Tag und max. 48 HMWs pro Jahr bis zu 350 µg/m³ sind zulässig)
	TMW	120 μg/m³	eingehalten (max. TMW 33,3 μg/m³ in Lenzing 3)	eingehalten
со	MW8	10 mg/m³	(max. MW8 2,3 mg/m³ in Linz-Römerberg)	<mark>eingehalten</mark>

Tabelle 28: IG-L Überschreitungen Anlage 1a

Anlage 4: Alarmwerte für SO₂

Eingehalten: Der maximale gleitende Dreistundenmittelwert war für SO_2 101,8 μ g/m³ in Lenzing 3 (Grenzwert 500 μ g/m³).

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II Nr. 298/2001)

Die Verordnung wurde aufgrund § 3 IG-L erlassen. Der Immissionswert zum Schutz der Ökosysteme für SO₂ gilt nur für Messungen an Standorten abseits von Ballungsräumen und sonstigen Emissionsquellen, also für die Hintergrundstationen. An diesen wurde er eingehalten.

00	Grenzwert	Winterhalbjahr	20 μg/m³	eingehalten
SO ₂	Zielwert	TMW	50 μg/m³	eingehalten

Tabelle 29: Einhaltung der Ökosystemgrenzwerte für SO₂

5.2.2 EU-Luftqualitätsrichtlinie 2008/50/EG

2021			Bewertung
	Grenzwert		
	MW1 nicht gleitend	350 μg/m³, max. 24 Überschreitungen zulässig	eingehalten
Schwefeldioxid	TMW	125 µg/m³	eingehalten
Schwefelaloxia	Kritische Werte für de	en Schutz der Vegetation	
	JMW	20 μg/m³	eingehalten
	Wintermittelwert	20 μg/m³	eingehalten
Kohlenmonoxid	Maximaler MW8	10 mg/m³	eingehalten

Tabelle 30: Überschreitungen der Grenzwerte der EU-Luftqualitätsrichtlinie 2008/50/EG

Immissionssituation in Bezug auf die Beurteilungsschwellen

Die **SO₂-Messwerte** aller Stationen lagen unter der unteren Beurteilungsschwelle für den Gesundheitsschutz (50 μ g/m³ als TMW maximal 3-mal/Jahr).

Alle SO_2 -Wintermittelwerte lagen im Winter 2020/2021 unter der unteren Beurteilungsschwelle für den Ökosystemschutz von 8 μ g/m³.

Im Winterhalbjahr 2021/2022 lag der SO2-Wintermittelwert von Steyregg-Au zwischen der oberen Beurteilungsschwelle von 12 μg/m³ und der unteren Beurteilungsschwelle. Alle übrigen Stationen lagen unter der unter der unteren Beurteilungsschwelle für den Ökosystemschutz von 8 μg/m³.

Alle **CO-Werte** lagen unter der unteren Beurteilungsschwelle von 5 mg/m³ als MW8.

6. <u>Schwermetalle</u>, <u>Benzo[a]pyren und polyzyklische aromatische</u> Kohlenwasserstoffe (PAHs) im PM₁₀- und PM_{2,5}-Staub

6.1 Schwermetalle im PM₁₀- und PM_{2,5}-Staub

Zur gravimetrischen Partikelmessung werden an jedem 4. Tag Quarzfaserfilter verwendet, an den übrigen Tagen kostengünstigere Glasfaserfilter. Aus den Tagesproben der Quarzfaserfilter werden Quartals-Mischproben gebildet und auf Ionen und Metalle analysiert. An verkehrsnahen Stationen im Winter wird generell Quarzfaser verwendet und zur Erfassung des Salzstreuungseinflusses jeder Überschreitungstag auch einzeln analysiert. Der Jahresmittelwert wird als gewichteter Mittelwert der Mischproben gebildet.

2021 wurden Schwermetalle ganzjährig an 7 Stationen im PM₁₀ und an 4 Stationen im PM_{2,5} gemessen. Alle Gehalte an giftigen Schwermetallen lagen weit unter den Grenz- und Zielwerten der EU-Richtlinien.

	2021		As	Cd	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	٧	Zn
	2021	[µg/m³]						[ng	/m³]					
S416	Linz-Neue Welt PM ₁₀	17,4	0,4	0,1	6,4	15,2	675	0,01	26,3	2,0	4,0	1,7	0,6	44
S431	Linz-Römerberg PM ₁₀	19,2	0,4	0,1	6,0	19,8	780	0,02	24,5	1,4	5,0	1,6	0,7	46
S184	Linz-Stadtpark PM ₁₀	15,6	0,3	0,1	3,4	7,5	373	0,02	14,9	1,1	4,4	0,9	0,4	36
S404	Traun PM ₁₀	15,5	0,3	0,1	2,9	7,5	343	0,01	9,5	0,8	2,8	1,3	0,3	24
S156	Braunau Zentrum PM ₁₀ *		0,2	0,1	2,5	3,8	200	0,01	5,8	0,7	2,1	0,8	0,2	21
S217	Enns-Kristein PM ₁₀	17,7	0,4	0,1	4,8	17,5	580	0,01	11,3	1,0	2,6	2,7	0,4	25
S406	Wels PM ₁₀	15,6	0,3	0,1	3,6	11,6	360	0,01	8,9	0,9	5,7	1,6	0,3	28
S184	Linz-Stadtpark PM _{2,5}	11,3	0,3	0,1	2,7	4,2	140	0,01	6,6	0,9	4,0	0,6	0,2	30
S173	Steyregg-Au PM _{2,5}	10,4	0,4	0,1	3,2	2,8	183	0,09	8,6	1,1	6,4	0,9	0,1	40
S432	Lenzing 3 PM _{2,5}	9,5	0,2	0,1	1,8	2,7	66	0,01	3,8	0,5	1,5	0,5	0,1	17
S406	Wels PM _{2,5}	10,9	0,2	0,1	2,0	4,5	119	0,01	3,0	0,7	5,2	0,9	0,1	23
Grenz	wert		6	5						20	500			

^{*} Es fehlen zwei Monate.

Tabelle 31: Jahresmittelwerte der Schwermetalle 2021

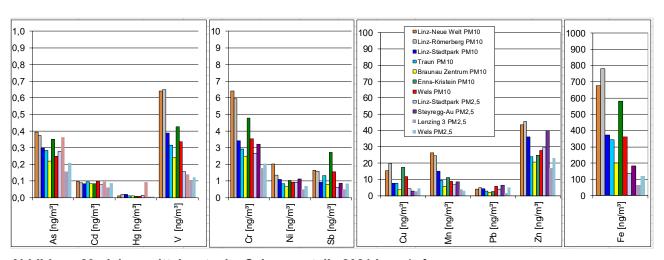


Abbildung 29: Jahresmittelwerte der Schwermetalle 2021 in ng/m³

Die Schwermetallgehalte bewegen sich in unterschiedlichen Größenordnungen. Die Quecksilbergehalte aller Stationen blieben unter 0,09 ng/m³. Dagegen erreichte der Jahresmittelwert von Eisen im PM₁₀ in Linz-Römerberg 780 ng/m³. Deutlich geringer als im PM₁₀ war der Eisengehalt im PM_{2,5}, d.h. Eisen hielt sich eher in der Grobstaubfraktion auf, ebenso wie Kupfer.

Blei, Arsen und Cadmium sind überwiegend in der feinen Fraktion zu finden und daher im $PM_{2,5}$ fast so hoch wie im PM_{10} .

Charakteristisch für die verkehrsnahen Stationen Linz-Römerberg und Enns-Kristein ist ein relativ hoher Antimon- und Kupfergehalt. Generell sind die Stationen Linz-Neue Welt und Linz-Römerberg am höchsten mit Schwermetallen belastet, allerdings im Vergleich zu den Grenzwerten auf niedrigem Niveau.

Die Langzeitauswertung zeigt gleichbleibend niedrige Gehalte der Schwermetalle in den letzten 10 Jahren.

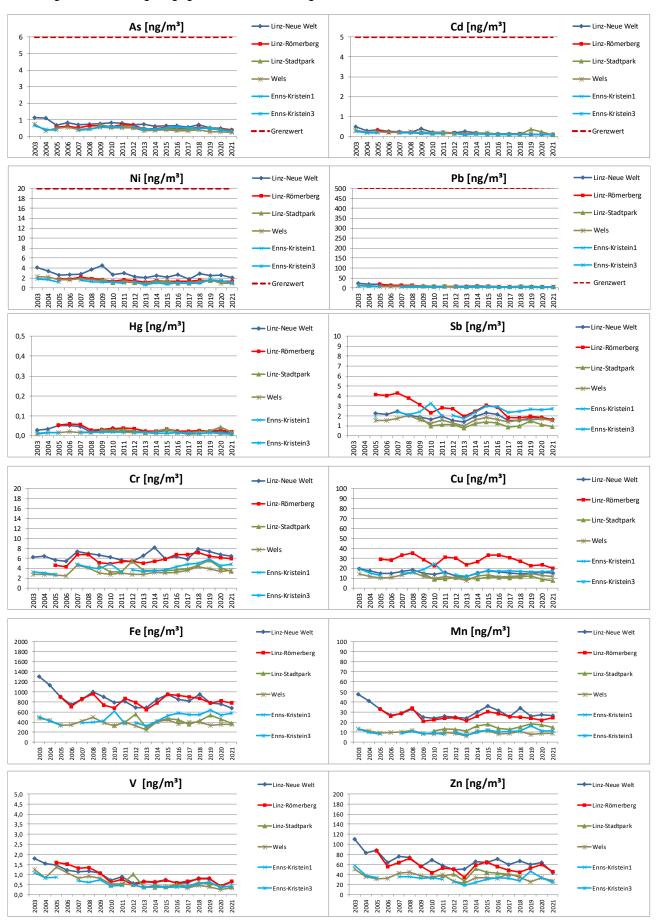
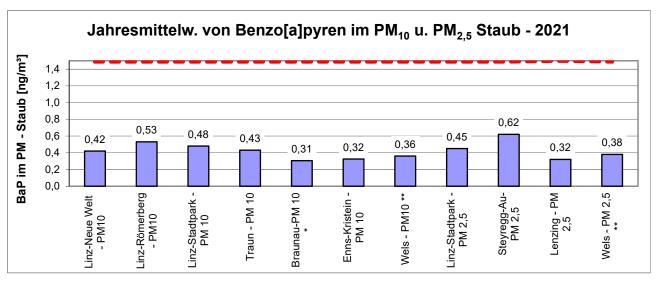


Abbildung 30: Langzeittrend des Schwermetallgehalts im PM₁₀

6.2 Benzo[a]pyren und polyzyklische aromatische Kohlenwasserstoffe (PAHs) im PM₁₀ und PM_{2,5} - Staub


Seit 2006 wird Benzo[a]pyren (BaP) in den gravimetrischen Staubproben PM₁₀ und PM_{2,5} untersucht. Für die Analysen wurden aliquote Teile der Tagesfilterproben zu Messperioden von jeweils 28 Tagen zusammengelegt, sodass das Jahr in 13 Perioden aufgeteilt wurde.

2021 liegen von 7 PM₁₀- und 4 PM_{2,5}-Messstellen Jahresmittelwerte vor.

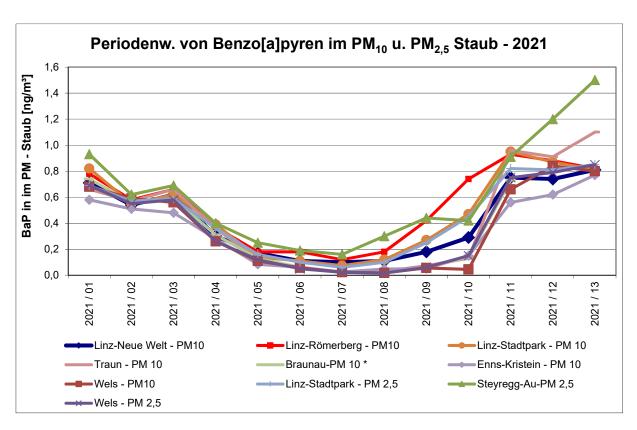
Die JMWs lagen 2021 zwischen 21 Prozent und 41 Prozent des Grenzwerts von 1 ng/m³. Da der Grenzwert auf ganze ng/m³ gerundet wird, liegt eine Überschreitung erst ab 1,5 ng/m³ = aufgerundet 2 ng/m³ vor.

Die Messwerte im Jahr 2021 zeigen an den Messstellen Linz-Neue Welt, Linz-Stadtpark und Enns-Kristein für PM₁₀ und für Linz-Stadtpark PM_{2,5} eine leicht höhere Belastung, an den Messstellen Linz-Römerberg und Wels für PM₁₀ und Wels PM_{2,5} eine leicht geringere Belastung als im Jahr 2020.

Die Werte in Linz-Stadtpark und in Wels zeigen, dass Benz[a]pyren praktisch fast zur Gänze in der PM_{2,5}-Fraktion vorkommt.

^{*} Es fehlen zwei Monate.

Abbildung 31: Benzo[a]pyren Jahresmittelwerte im PM - Staub 2021


Start Probenahme	01.01. 2021	26.01. 2021	23.02. 2021	23.03. 2021	20.04.	18.05. 2021	15.06. 2021	13.07. 2021	10.08. 2021	07.09. 2021	05.10. 2021	02.11. 2021	30.11. 2021	ssmittel- [ng/m³]
Messperiode	2021 / 01	2021 / 02	2021 / 03	2021 / 04	2021 / 05	2021 / 06	2021 / 07	2021 / 08	2021 / 09	2021 / 10	2021 / 11	2021 / 12	2021 / 13	Jahresmittel- wert [ng/m³]
Linz-Neue Welt - PM10	0,71	0,54	0,62	0,30	0,17	0,11	0,10	0,11	0,18	0,29	0,75	0,74	0,81	0,42
Linz-Römerberg - PM10	0,78	0,58	0,66	0,37	0,18	0,18	0,12	0,18	0,42	0,74	0,93	0,88	0,82	0,53
Linz-Stadtpark - PM 10	0,82	0,55	0,62	0,39	0,14	0,11	0,074	0,12	0,27	0,47	0,95	0,87	0,81	0,48
Traun - PM 10	0,66	0,57	0,66	0,36	0,12	0,056	0,024	0,029	0,074	0,13	0,96	0,91	1,1	0,43
Braunau-PM 10 *	0,74	0,56	0,59	0,31	0,13	0,062	0,020	0,019	0,058	0,14	0,73			0,31
Enns-Kristein - PM 10	0,58	0,51	0,48	0,28	0,084	0,062	0,025	0,048	0,051	0,15	0,56	0,62	0,77	0,32
Wels - PM10 **	0,68	0,59	0,56	0,26	0,11	0,057	0,023	0,018	0,056	0,045	0,66	0,84	0,80	0,36
Linz-Stadtpark - PM 2,5	0,69	0,57	0,59	0,36	0,16	0,10	0,061	0,10	0,25	0,45	0,82	0,81	0,85	0,45
Steyregg-Au-PM 2,5	0,93	0,62	0,69	0,40	0,25	0,19	0,16	0,30	0,44	0,42	0,91	1,2	1,5	0,62
Lenzing - PM 2,5	0,63	0,51	0,43	0,24	0,095	0,051	0,026	0,026	0,094	0,21	0,51	0,64	0,74	0,32
Wels - PM 2,5 **	0,69	0,55	0,58	0,26	0,12	0,049	0,023	0,016	0,061	0,15	0,75	0,79	0,85	0,38

^{*} Es fehlen zwei Monate.

Tabelle 32: Periodenwerte von Benzo[a]pyren im PM - Staub 2021 [ng/m³]

^{**} Die geringfügig höheren Werte von Benzo[a]pyren in Wels im PM_{2.5} als im PM₁₀ entstehen durch Messunsicherheiten.

^{**} Die geringfügig höheren Werte von Benzo[a]pyren in Wels im $PM_{2,5}$ als im PM_{10} entstehen durch Messunsicherheiten.

^{*} Es fehlen zwei Monate.

Abbildung 32: Verlauf der Periodenmittelwerte Benzo[a]pyren im PM - Staub 2021 [ng/m³]

		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Linz-24er-Turm	PM ₁₀												0,43				
Linz-Neue Welt	PM ₁₀		0,91	1,08	1,28	1,18	1,47	0,96	0,85	0,81	0,64	0,51	0,49	0,49	0,45	0,41	0,42
Linz-Kleinmünchen	PM ₁₀											0,47					
Linz-Römerberg	PM ₁₀		0,91	0,89	1,04	1,06	1,44	0,81	0,77	0,92	0,71	0,63	0,57	0,53	0,58	0,60	0,53
Linz-Stadtpark	PM ₁₀					0,95	1,18	0,81	0,61	0,80	0,53	0,52	0,49	0,44	0,50	0,47	0,48
Steyregg-Au	PM ₁₀				0,97	1,00	1,20	0,84	0,78						0,62		
Steyregg-Weihleite	PM ₁₀		0,80	0,81													
Bad Ischl	PM ₁₀									0,78						0,46	
Braunau Zentrum	PM ₁₀												0,40				0,31
Enns-Kristein	PM ₁₀		0,67	0,76	0,75	0,74	0,94	0,61	0,53	0,51	0,42	0,38	0,37	0,37	0,32	0,30	0,32
Gosau	PM ₁₀									0,94							
Grünbach	PM ₁₀														0,12		
Lenzing	PM ₁₀															0,36	
Steyr	PM ₁₀	1,12	0,83	0,88	0,94	0,92	1,07	0,77	0,66							0,35	
Steyr-Tabor	PM ₁₀											0,65					
Wels **	PM ₁₀	1,09	0,82	1,10	1,00	0,98	1,24	0,78	0,70	0,75	0,54	0,55	0,50	0,41	0,40	0,41	0,36
Linz-Neue Welt	PM _{2,5}	0,92	0,86	0,96													
Linz-Stadtpark	PM _{2,5}				0,81	0,87	1,04	0,72	0,56	0,69	0,49	0,52	0,47	0,40	0,47	0,42	0,45
Wels **	PM _{2,5}			1,08	1,03	0,98	1,23	0,79	0,63	0,72	0,57	0,52	0,49	0,41	0,41	0,39	0,38

^{**} Die geringfügig höheren Werte von Benzo[a]pyren im Jahr 2021 in Wels im PM_{2,5} als im PM₁₀ entstehen durch Messunsicherheiten.

Tabelle 33: Trend der BaP-Jahresmittelwerte im PM - Staub [ng/m³]

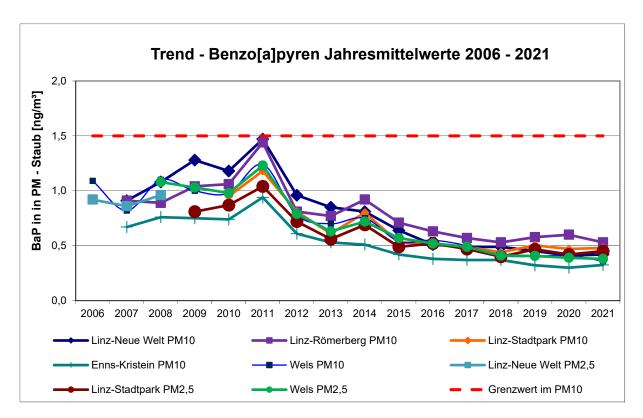


Abbildung 33: Trend der BaP-Jahresmittelwerte im PM - Staub [ng/m³]

Die IG-L-Messkonzept-Verordnung schreibt vor, dass zumindest an der Station Linz-Neue Welt außer Benzo[a]pyren auch weitere polyzyklische aromatische Kohlenwasserstoffe (zumindest Benzo[a]anthracen, Benzo[b]fluoranthen, Benzo[j]fluoranthen, Benzo[k]fluoranthen, Indeno[123cd]pyren und Dibenzo[ah+ac]anthracen) zu messen sind.

Das im Labor der Umwelt Prüf- und Überwachungsstelle des Landes Oö. angewandte PAH-Analysenverfahren ermöglicht die gleichzeitige Bestimmung aller als "Priority Pollutants" eingestuften PAHs. Daher wurden auch an allen Messstellen alle PAHs ausgewertet.

2021	Linz-Neue Welt PM ₁₀	Linz-Rö- merberg PM ₁₀	Linz- Stadtpark PM ₁₀	Enns-Kris- tein PM ₁₀	Wels-PM ₁₀	Linz- Stadtpark PM _{2,5}	Wels- PM _{2,5}
Benz-a-pyren	0,42	0,53	0,48	0,32	0,36	0,45	0,38
Benz-a-anthracen	0,33	0,44	0,38	0,24	0,25	0,38	0,29
Chrysen	0,41	0,54	0,48	0,31	0,31	0,48	0,34
Benz-b+j-fluoranthen	0,68	0,87	0,86	0,50	0,55	0,79	0,54
Benz-k-fluoranthen	0,28	0,36	0,33	0,21	0,22	0,31	0,22
Benz-e-pyren	0,55	0,83	0,69	0,40	0,42	0,65	0,46
Perylen	0,10	0,13	0,12	0,07	0,08	0,11	0,09
Indeno-123cd-pyren	0,42	0,49	0,47	0,32	0,36	0,44	0,35
Dibenz-ah+ac-anthracen	0,12	0,15	0,14	0,08	0,08	0,13	0,08
Benz-ghi-perylen	0,42	0,50	0,47	0,34	0,38	0,43	0,38
Summe PAKs [ng/m³]	3,7	4,8	4,4	2,8	3,0*	4,2	3,1*

^{*} Die geringfügig höheren Werte an PAHs Wels im PM_{2,5} als im PM₁₀ entstehen durch Messunsicherheiten.

Tabelle 34: Polyzyklische Aromaten, Jahresmittelwerte 2021 [ng/m³]

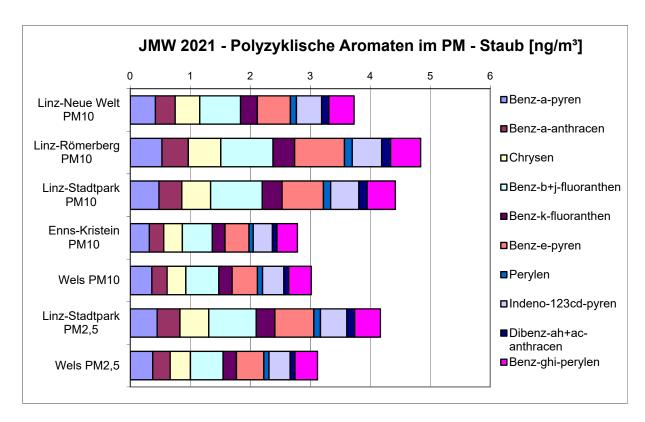


Abbildung 34: Polyzyklische Aromaten im PM-Staub, Jahresmittelwerte 2021 [ng/m³]

6.3 Einhaltung von Grenzwerten – Schwermetalle und Benzo[a]pyren im Feinstaub

Immissionsschutzgesetz - Luft

Anlage 1a: Immissionsgrenzwerte

2021	Gı	renzwert		Bewertung
Blei im PM ₁₀	im PM ₁₀ JMW 0,5 μg/m³		max. JMW 0,0064 μg/m³ in Steyregg-Au in PM _{2,5} max. JMW 0,0057 μg/m³ in Wels in PM ₁₀	<mark>eingehalten</mark>
Arsen im PM ₁₀	JMW	6 ng/m³	max. JMW 0,4 ng/m³ in Linz-Neue Welt	eingehalten
Cadmium im PM ₁₀	JMW	5 ng/m³	max. JMW 0,1 ng/m³ in Linz-Neue Welt	eingehalten
Nickel im PM ₁₀	JMW	20 ng/m³	max. JMW 2,0 ng/m³ in Linz-Neue Welt	eingehalten
Benzo[a]pyren im PM ₁₀	yren JMW 1 ng/m³		max. JMW 0,62 ng/m 3 in Steyregg-Au in PM $_{2,5}$ max. JMW 0,53 ng/m 3 in Linz-Römerberg in PM $_{10}$	eingehalten

Tabelle 35: IG-L Überschreitungen Anlage 1a

EU-Luftqualitätsrichtlinie 2008/50/EG – Grenzwert für Blei im PM₁₀

Die Bestimmungen entsprechen dem Immissionsschutzgesetz – Luft.

Richtlinie 2004/107/EG - Zielwerte für Arsen, Cadmium, Nickel und Benzo[a]pyren

Die Bestimmungen entsprechen dem Immissionsschutzgesetz – Luft. Die Zielwerte sind im IG-L ab 1.1.2013 Grenzwerte.

Immissionssituation in Bezug auf die Beurteilungsschwellen

Alle JMWs von Blei im PM_{10} lagen im Jahr 2021 unter der unteren Beurteilungsschwelle von 0,25 μ g/m³ (= 250 ng/m³). Alle Messwerte für die weiteren Schwermetalle im PM_{10} lagen unter der unteren Beurteilungsschwelle bei Arsen von JMW 2,4 ng/m³, bei Cadmium von JMW 2 ng/m³ und bei Nickel von JMW 10 ng/m³.

Der JMW von Benzo[a]pyren lag 2021 an Messstelle Steyregg-Au in $PM_{2,5}$ über der oberen Beurteilungsschwelle von 0,6 ng/m³. Die Messstationen Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark und Traun lagen bei Benzo[a]pyren in PM_{10} zwischen der unteren (0,4 ng/m³) und der oberen Beurteilungsschwelle. Die Stationen Braunau, Enns-Kristein, und Wels lagen unter der unteren Beurteilungsschwelle. Die Station Lenzing lag beim Gehalt von Benzo[a]pyren in $PM_{2,5}$ unter der unteren Beurteilungsschwelle.

7. Benzol und BTEX-Aromaten - Messungen mit Passivsammlern

2021 waren die meisten Jahresmittelwerte für Benzol geringfügig niedriger als im Vorjahr. Alle Werte lagen weit unter dem Grenzwert von 5 μ g/m³. Der höchstbelastete Punkt war wieder Linz-Bernaschekplatz mit 0,97 μ g/m³. Dies sind etwa 20 Prozent des Grenzwerts.

Seit 2000 ist die Benzolbelastung generell auf einen Bruchteil des Grenzwerts zurückgegangen.

Für die übrigen BTEX-Aromaten gibt es keine Grenzwerte.

Messperiode	30.12.20 - 28.1.21	28.1.21 - 1.3.21	1.3.21 - 30.3.21	30.3.21 - 28.4.21	28.4.21 - 31.5.21	31.5.21 - 1.7.21	1.7.21 - 29.7.21	29.7.21 - 30.8.21	30.8.21 - 28.9.21	28.9.21 - 27.10.21	27.10.21 - 10.12.21	10.12.21 - 7.1.22	Benzol - Jahres- mittel 2021
Messzyklus	1	2	3	4	5	6	7	8	9	10	11	12	[µg/Nm³]
Linz-Bahnhofspinne	1,63	1,96	1,15	0,78	0,46	0,42	0,37	0,49	0,76	1,09	1,26	1,13	0,96
Linz-Bernaschekplatz	1,66	1,99	1,05	0,78	0,51	0,46	0,46	0,51	0,77	1,01	1,24	1,24	0,97
Linz-Neue Welt	1,49	1,73	1,00	0,65	0,36	0,28	0,30	0,38	0,60	0,82	1,13	1,09	0,82
Steyregg-Au	1,42	1,45	0,99	0,64	0,40	0,25	0,28	0,37	0,42	0,78	0,99	1,17	0,76
Braunau	1,93	1,25	0,77	0,59	0,34	0,27	0,28	0,35	0,50	0,72	1,05	1,24	0,77
Enns-Autobahn	1,30	1,27	0,86	0,52	0,30	0,21	0,25	0,34	0,44	0,68	0,92	1,01	0,68
Grünbach	0,77	0,66	0,51	0,33	0,16	0,097	0,092	0,15	0,21	0,37	0,45	0,48	0,36
Wels Linzerstr.	1,43	1,34	0,89	0,53	0,30	0,20	0,21	0,31	0,48	0,78	1,07	1,00	0,71

Tabelle 36: Benzol- Periodenmittelwerte 2021 [µg/m³]

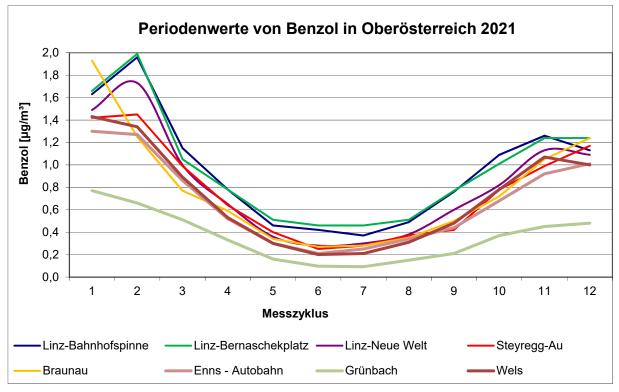


Abbildung 35: Verlauf der Periodenmittelwerte von Benzol 2021

2021	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Linz-Bahnhofspinne										1,24	1,22	1,05	0,99	0,94	0,91	0,97	0,96
Linz-Bernaschek- platz	2,29	2,53	1,84	1,67	1,77	1,66	1,56	1,03	1,33	1,18	1,35	1,14	1,07	0,98	0,89	0,98	0,97
Linz-Neue Welt	1,72	1,93	1,55	1,34	1,47	1,38	1,33	0,92	1,16	1,05	1,14	0,94	0,90	0,79	0,76	0,82	0,82
Linz-Tankhafen	1,48	1,89	1,22	1,04	1,21	1,13	1,11	0,82	1,02								
Linz-Urfahr	1,86	2,10	1,50														
Kleinmünchen	1,56	1,77	1,38	1,26	1,30	1,34	1,20	0,82	1,05								
Steyregg-Au					1,23	1,33	1,14	0,84	1,12	0,88	1,02	0,85	0,90	0,69	0,67	0,76	0,76
Steyregg-Weihleite	1,41	1,63	1,27	1,05													
Ansfelden - Auto- bahn										0,80	0,92	0,93	0,82	0,72	0,66	0,70	
Bad Ischl	1,48	1,51	1,22	1,13	1,21	1,17	1,18	0,79	1,03								
Braunau	1,53	1,51	1,13	1,18	1,18	1,21	1,19	0,73	1,03	0,96	0,94	0,91	0,89	0,81	0,69	0,73	0,77
Grünbach									0,55	0,43	0,44	0,39					0,36
Kristein (Autobahn bei Enns)	1,43	1,47	1,09	1,04	1,10	1,20	1,13	0,61	0,95	0,89	0,81	0,82					0,68
Schöneben (Ulrichsberg)	0,56	0,56	0,50	0,44	0,57	0,62	0,46										
Steyr	1,30	1,49	1,09	1,06	1,09	1,06	1,03	0,70	0,91	0,87	0,82	0,79					
Vöcklabruck	1,33	1,34	1,03	1,03	1,07	1,13	1,08	0,63	0,89	0,87	0,79	0,78	0,78	0,65		0,66	
Wels	1,56	1,54	1,22	1,26	1,26	1,31	1,30	0,74	1,09	1,06	0,97	0,95	0,86	0,78	0,74	0,77	0,71

Tabelle 37: 2005 – 2021 Jahresmittelwerte Benzol passiv (μg/m³ bezogen auf 20°C, 1013 mbar)

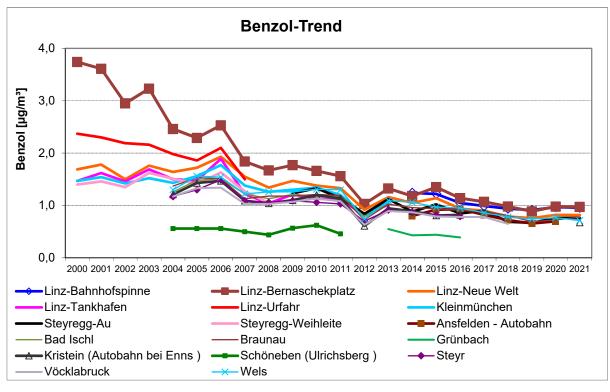


Abbildung 36: Trend der Jahresmittelwerte Benzol

2021	Benzol	Toluol	Ethylbenzol	p-Xylol	m-Xylol	o-Xylol	Summe BTEX
Linz-Bahnhofspinne	0,96	1,26	0,43	0,43	1,06	0,64	4,8
Linz-Bernaschekplatz	0,97	1,39	0,50	0,51	1,24	0,79	5,4
Linz-Neue-Welt	0,82	1,23	0,48	0,49	1,16	0,67	4,8
Steyregg-Au	0,76	0,78	0,35	0,35	0,88	0,59	3,7
Braunau	0,77	1,61	0,57	0,61	1,48	0,83	5,9
Enns - Autobahn	0,68	0,64	0,31	0,31	0,76	0,50	3,2
Grünbach	0,36	0,27	0,20	0,20	0,51	0,37	1,9
Wels	0,71	0,94	0,47	0,47	1,12	0,62	4,3

Tabelle 38: BTEX-Aromaten [µg/m³]

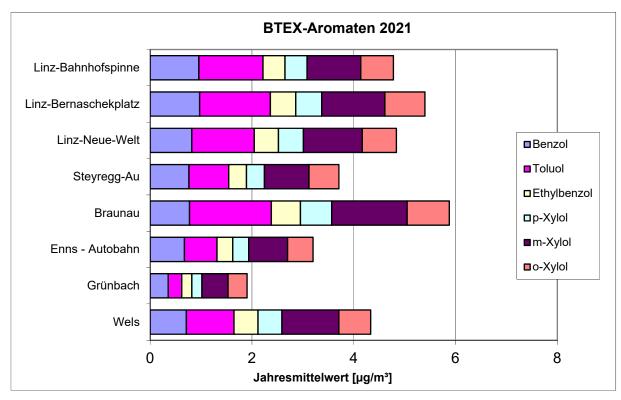


Abbildung 37: BTEX-Aromaten [µg/m³]

7.1 Einhaltung von Grenzwerten - Benzol

Anlage 1a: Immissionsgrenzwerte nach dem Immissionsschutzgesetz - Luft und der EU-Luftqualitätsrichtlinie 2008/50/EG

2021	G	renzwert		Bewertung
Benzol	JMW	5 µg/m³	Maximalwert 0,97 μg/m³ in Linz-Bernaschekplatz	eingehalten

Die Grenzwerte nach dem IG-L und nach der EU-Luftqualitätsrichtlinie 2008/50/EG sind gleich.

Tabelle 39: Überschreitungen der Immissionsgrenzwerte nach dem IG-L und nach der EU-Luftqualitätsrichtlinie 2008/50/EG

Immissionssituation in Bezug auf die Beurteilungsschwellen

Alle Jahresmittel für Benzol lagen unter der unteren Beurteilungsschwelle von 2 µg/m³.

8. <u>Staubniederschlag, Schwermetalle und polyzyklische aromatische</u> Kohlenwasserstoffe (PAHs) in der Deposition

8.1 Staubniederschlag und Schwermetalle in der Deposition

Staubniederschlagsmessungen wurden im Jahr 2021 jeweils an mehreren Messstellen in Linz und Steyregg sowie an je einem Messpunkt in Braunau, Kremsmünster und Wels durchgeführt.

Einige wenige Einzelmonatswerte sind ausgefallen, da die Proben durch Insekten und/oder Algen verunreinigt waren. Ein Becher lag in der Wiese und ein weiterer Becher wurde durch Hagel zerstört. Am Messpunkt Steyregg MP132 standen aufgrund von Verunreinigungen nur 8 von 12 Becher für die Auswertung zur Verfügung.

Laut Immissionsschutzgesetz – Luft, Anlage 6 Allgemeine Bestimmungen sind für die Ermittlung des Kennwerts 75 % der Tage eines Kalenderjahres erforderlich. Dies ist am Messpunkt Steyregg MP132 im Jahr 2021 nicht gegeben.

Der Grenzwert des IG-L für den Staubniederschlag wurde an allen Messstellen eingehalten.

Im Jahr 2021 war der Staubniederschlag an der Messstelle Linz-Römerberg mit 203 mg/(m²d) ungewöhnlich hoch. In den Jahren 2014 – 2020 lag der Staubniederschlag zwischen 135 und 159 mg/(m²d). Wir vermuten, dass dieser hohe Wert durch Staubverfrachtungen bei den Bauarbeiten zur Errichtung der Hängebrücke für die A26 Linzer Autobahn mitverursacht wurde.

Im Staubniederschlag wurden eine Reihe von Schwermetallen, unter anderem die im IG-L geregelten Schwermetalle Blei und Cadmium bestimmt. Die Gehalte von Blei und Cadmium im Staubniederschlag blieben an allen Messstellen weit unter den Grenzwerten.

Hohe Gehalte an Chrom (Cr), Kupfer (Cu) und Vanadium (V) wurden an der Station Linz-Römerberg und Linz-Neue Welt gefunden. Die höchsten Werte an Antimon wurden an der Station Linz-Römerberg gemessen, was auf den Verkehr als Emissionsquelle hinweist.

Hohe Werte von Blei (Pb), Cadmium (Cd), Quecksilber (Hg) und Arsen (As) finden sich in Steyregg. Bei Thallium (Tl) trat die höchste Konzentration in Kremsmünster auf, allerdings im sehr niedrigen Bereich.

		Staubnie-					Eintr	ag an				
2021		derschlag	Pb	Cd	Ni	Cu	Cr	TI	Sb	V	Hg	As
		[mg/(m²d)]		[µg/m²d]								
Linz-Kleinmünchen	12/12	91	1,7	0,04	2,1	7,4	3,2	0,01	0,17	1,1	0,01	0,15
Linz-Neue Welt	9/12	139	4,5	0,10	6,1	28,8	17,6	0,02	0,32	4,1	0,02	0,41
Linz-Römerberg	12/12	203	5,9	0,09	3,3	30,2	16,0	0,03	0,51	5,6	0,03	0,51
Linz-Stadtpark	12/12	110	2,2	0,08	1,5	8,4	3,6	0,01	0,19	1,3	0,01	0,24
Steyregg MP101	11/12	165	6,4	0,22	4,2	8,1	15,1	0,04	0,17	4,8	0,07	0,70
Steyregg MP132	8/12											
Braunau BR_1	12/12	65	1,5	0,04	1,4	5,5	1,4	0,01	0,15	0,7	0,01	0,16
Kremsmünster	12/12	75	5,8	0,08	2,0	5,9	1,3	0,07	0,13	0,4	0,01	0,26
Wels	12/12	64	2,1	0,05	0,9	7,5	1,8	0,01	0,17	0,8	0,01	0,13
Grenzwert		210	100	2								

Der höchste Wert ist fett dargestellt.

Tabelle 40: Staubniederschlag und Schwermetalle im Staubniederschlag 2021

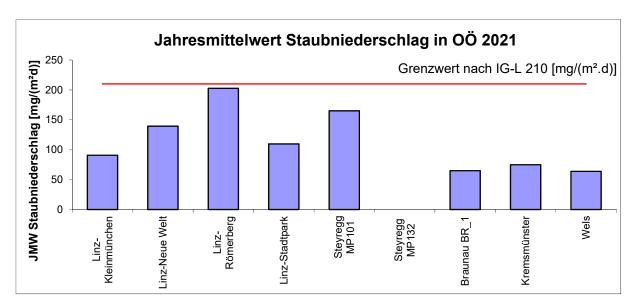


Abbildung 38: Jahresmittelwerte Staubniederschlag in Oberösterreich 2021

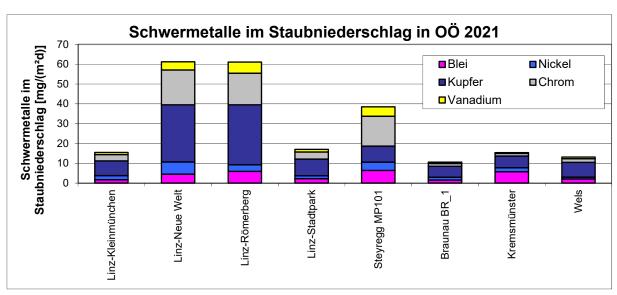


Abbildung 39: Schwermetalle im Staubniederschlag Teil 1

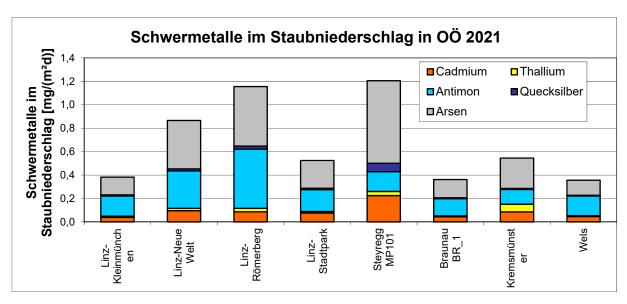


Abbildung 40: Schwermetalle im Staubniederschlag Teil 2

8.2 Eintrag von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) in der Deposition

Neben dem Gehalt von PAHs im PM₁₀ - Staub wurde an ausgewählten Messstellen auch die Deposition von PAHs bestimmt.

Unter atmosphärischer Deposition werden die Stoffflüsse aus der Erdatmosphäre auf die Erdoberfläche verstanden, das heißt der Austrag und die Ablagerung von gelösten, partikelgebundenen oder gasförmigen Luftinhaltsstoffen auf Oberflächen (Akzeptoren) biotischer oder abiotischer Systeme. Biotische Akzeptoren sind die oberirdischen Sprossteile von Pflanzen, insbesondere die Blätter und Nadeln. Abiotische Akzeptoren sind beispielsweise Böden sowie Oberflächengewässer.

Messtechnik

Gemessen wird die Deposition mit Depositionssammlern, das sind im Prinzip nach oben offene Töpfe oder Trichter mit einem Sammelgefäß. Für die Messung der gesamten Deposition ist die Auffangeinheit während der gesamten Sammelperiode durchgehend gegenüber der Atmosphäre geöffnet (Bulk-Sammler). Um auch im Winter bei Schneelage aussagekräftige Ergebnisse zu erhalten, wurden die Depositionssammler des Landes Oberösterreich zusätzlich mit einer internen Heizung versehen, um keine Messwertverfälschungen durch den Schnee bzw. durch Vereisung zu erhalten. Das nach oben offene Sammelgefäß aus Borosilikatglas hat im oberen zylindrischen Teil einen Durchmesser von 25 cm und ist im unteren Teil zu einem Trichter mit Ausflussöffnung verjüngt. Am Trichterauslass wird nun die Adsorbersäule, welche mit einem makroporösen Polystyrenharz gefüllt ist, angeschraubt.

Die aus der Atmosphäre innerhalb eines Monats deponierten organischen Spurenstoffe - sowohl aus der nassen als auch aus der trockenen Deposition – werden über den Glastrichter gesammelt und im angeschlossenen Adsorber zurückgehalten. Die im gesamten Glasgefäß, sowohl im zylindrischen Teil als auch im Trichterteil, anhaftenden Partikel werden beim Wechsel der Adsorbersäule mit Glaswolle und Aceton aufgenommen. Danach wird das Glasgefäß innen säuberlich mit Aceton nachgespült. Das Adsorbermaterial (Polystyrenharz) sowie die Glaswolle werden im chemischen Laboratorium extrahiert und mit der Spüllösung vereinigt. Die Probe enthält nun die Summe des im Adsorber, in der Glaswolle und in der Spüllösung innerhalb eines Monates gesammelten Depositionsmaterials. Die so erhaltene Messlösung wird mittels Gaschromatographie mit gekoppeltem Massenspektrometer auf polyaromatische Kohlenwasserstoffe analysiert.

Messergebnisse 2021

2021	Linz-Neue Welt	Linz-Römer- berg	Grünbach	Enns- Kristein	Vöck- labruck	Wels
Benz-a-pyren	54	47	14	30	21	18
Benz-e-pyren	81	71	19	54	31	29
Summe Benz-a+e-pyren	135	118	33	85	52	46
Benz-a-anthracen	56	46	10	29	22	16
Chrysen	91	79	23	56	41	35
Benz-b+j-fluoranthen	114	97	33	69	52	47
Benz-k-fluoranthen	47	37	13	26	21	18
Perylen	15	12	2	7	4	3
Indeno-123cd-pyren	66	56	21	40	30	26
Dibenz-ah+ac-anthracen	23	17	6	12	9	7
Benz-ghi-perylen	76	87	21	74	26	28
Summe PAKs [ng/(m²d)]	623	549	163	398	257	226

Tabelle 41: Jahresmittelwerte der Deposition von Polyzyklischen Aromatischen Kohlenwasserstoffen (PAH) [ng/(m²d)]

Das Verteilungsmuster der einzelnen PAHs ist fast überall ähnlich, nur in Enns-Kristein überwiegt Benzo[ghi]perylen.

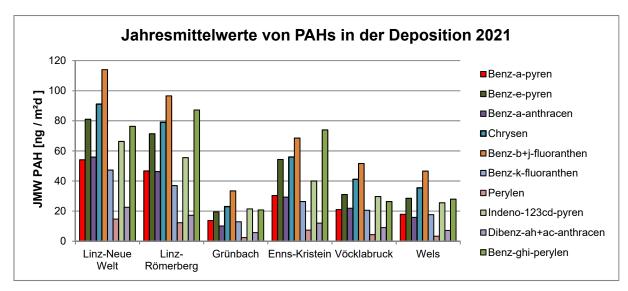


Abbildung 41: Jahresmittelwerte von PAHs in der Deposition

Mess- periode	Start Probenahme	Ende Probenahme	Linz-Neue Welt	Linz-Rö- merberg	Grünbach	Enns- Kristein	Vöck- labruck	Wels
2021 / 1	22.12.2020	21.01.2021	90	83	34	37	19	33
2021 / 2	21.01.2021	23.02.2021	31	45	15	23	18	28
2021 / 3	23.02.2021	23.03.2021	67	51	16	28	38	14
2021 / 4	23.03.2021	22.04.2021	54	43	19	43	70	10
2021 / 5	22.04.2021	20.05.2021	43	52	14	47	24	16
2021 / 6	20.05.2021	21.06.2021		26	9	14	5	11
2021 / 7	21.06.2021	21.07.2021	46	30	4	34	35	12
2021 / 8	21.07.2021	23.08.2021	63	33	4	27	7	8
2021 / 9	23.08.2021	23.09.2021	49	34	3	15	3	18
2021 / 10	23.09.2021	21.10.2021	71	54	15	36	13	21
2021 / 11	21.10.2021	22.11.2021	39	53	11	22	11	16
2021 / 12	22.11.2021	22.12.2021	45	60	24	45	19	27
Jahre	Jahresmittelwert [ng/(m²d)]		54	47	14	30	21	18

Tabelle 42: Jahresverlauf der Deposition von Benzo[a]pyren

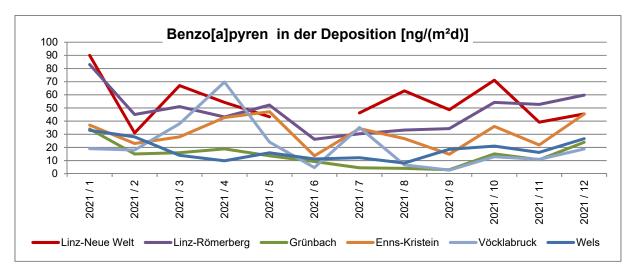


Abbildung 42: Jahresverlauf der Deposition von Benzo[a]pyren 2021

Mess- periode	Start Probenahme	Ende Probenahme	Linz-Neue Welt	Linz-Rö- merberg	Grünbach	Enns- Kristein	Vöck- labruck	Wels
2021 / 1	22.12.2020	21.01.2021	972	921	366	506	229	390
2021 / 2	21.01.2021	23.02.2021	581	601	193	399	320	408
2021 / 3	23.02.2021	23.03.2021	761	571	207	444	537	218
2021 / 4	23.03.2021	22.04.2021	545	459	228	522	735	128
2021 / 5	22.04.2021	20.05.2021	438	509	147	481	267	172
2021 / 6	20.05.2021	21.06.2021		355	107	257	64	163
2021 / 7	21.06.2021	21.07.2021	677	359	94	408	394	160
2021 / 8	21.07.2021	23.08.2021	631	367	47	300	77	89
2021 / 9	23.08.2021	23.09.2021	637	439	57	237	44	260
2021 / 10	23.09.2021	21.10.2021	686	602	154	417	143	219
2021 / 11	21.10.2021	22.11.2021	424	715	121	285	125	196
2021 / 12	22.11.2021	22.12.2021	517	712	263	580	241	301
Jahre	Jahresmittelwert [ng/(m²d)]		623	549	163	398	257	226

Tabelle 43: Jahresverlauf der Deposition von PAHs 2021

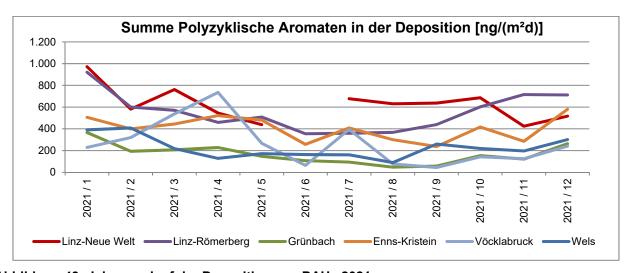


Abbildung 43: Jahresverlauf der Deposition von PAHs 2021

8.3 Einhaltung von Grenzwerten – Staubniederschlag und Blei und Cadmium in der Deposition

Anlage 2: Deposition

2021		Grenzwert		Bewertung
Staubniederschlag	JMW	210 mg/(m²d)	Maximalwert 203 mg/(m²d) am Messpunkt Linz-Römerberg	eingehalten
Blei im Staubniederschlag	JMW	0,100 mg/(m²d) (100 μg/(m²d))	Maximalwert 6,4 μg/(m²d) am Messpunkt Steyregg MP101	eingehalten
Cadmium im Staubniederschlag	JMW	0,002 mg/(m²d) (2 µg/(m²d))	Maximalwert 0,22 μg/(m²d) am Messpunkt Steyregg MP101	eingehalten

Tabelle 44: Überschreitungen der Immissionsgrenzwerte des Staubniederschlags nach dem IG-L

9. Meteorologie im Jahresverlauf 2021

9.1 Meteorologische Bedingungen

Nach einer Serie von sehr warmen Jahren gab es mit 2021 nun wieder ein Jahr, das nicht ganz so warm verlaufen ist. Das Jahr war in Oberösterreich um -0,1 °C zu kühl verglichen mit dem Mittel 1991-2020. Trotz der Tatsache, dass es das kälteste Jahr seit 2010 war, liegt 2021 an 21. Stelle der wärmsten Jahre in Österreich. In der oberösterreichweiten Auswertung des Niederschlags war 2021 ein zu trockenes Jahr. Es fielen um sieben Prozent weniger Niederschlag.

Nachfolgend werden die meteorologischen Messungen für Oberösterreich für die einzelnen Monate im Jahr 2021 zusammengefasst.

Jänner

Der erste Monat im Jahr 2021 war in Oberösterreich trüb, im Flachland zu mild und im Bergland etwas zu kühl. Im Flächenmittel war der Jänner 2021 um 0,9 Grad Celsius wärmer als das Mittel 1981-2010. Die höchste Temperatur in diesem Monat wurde am 21. Jänner mit 13 Grad Celsius an der Wetterstation in Unterach am Attersee gemessen. Den tiefsten Wert verzeichnete am 11. Jänner die Klimastation in Aspach mit -15,6 Grad Celsius.

Die Niederschlagsbilanzen an den oberösterreichischen Messstellen waren durchwegs ausgeglichen. Im Flächenmittel summierte sich in Oberösterreich fast genau das Klimamittel von 1981 bis 2010. Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in St. Wolfgang am Wolfgangsee mit 127 Liter pro Quadratmeter (+26%). Die geringste Niederschlagsmenge wurde mit 21 Liter pro Quadratmeter (-70%) in Wolfsegg am Hausruck registriert.

Die Sonne war in diesem Jänner ein seltener Gast. In allen Landesteilen war die Ausbeute an direktem Sonnenschein, verglichen mit dem klimatologischen Mittel, unterdurchschnittlich (-30%). Mit 67 Sonnenstunden war es am Feuerkogel am sonnigsten.

An der ZAMG-Messstelle in Wolfsegg am Hausruck wurde am 28. Jänner die kräftigste Windspitze von 92 km/h ermittelt.

Februar

Der Februar 2021 war rückblickend sehr mild und größtenteils trocken. Eine kurze Phase mit polarer Kaltluft und eine extrem milde Wetterphase prägten den Februar. Innerhalb von zehn Tagen wurde die tiefste und die höchste Temperatur dieses Winters gemessen. Im Flächenmittel war der Februar 2021 um +2,1 Grad Celsius wärmer als das Mittel 1991-2020. Die höchste Temperatur in diesem Monat wurde am 25. Februar mit 20,8 Grad Celsius an der Wetterstation in Weyer (426 m) gemessen. Den tiefsten Wert verzeichnete am 12. Februar die Klimastation in Ostermiething (412 m) mit -15,6 Grad Celsius.

Trotz westlicher Wetterlagen und dann in weiterer Folge mediterraner Tiefdrucktätigkeit gab es in Oberösterreich in diesem Monat nur wenig Niederschlag. Im Flächenmittel summierte sich im gesamten Bundesland um 38 Prozent weniger Niederschlag als im langjährigen Mittel (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Bad Ischl mit 66 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 20 Liter pro Quadratmeter in Freistadt registriert.

Nach den zwei relativ trüben Vormonaten, war der Februar wieder ein Monat, der in weiten Teilen des Landes, verglichen mit dem vieljährigen Mittel, viel Sonnenschein brachte (+43%). Mit 149 Sonnenstunden war es in Windischgarsten (600 m) am sonnigsten.

An der ZAMG-Messstelle in Wolfsegg am Hausruck wurde am 4. Februar die kräftigste Windspitze von 81 km/h aufgezeichnet.

März

Der März 2021 war geprägt durch extreme Temperaturschwankungen. Das Spektrum der Lufttemperatur reichte von frühlingshaft zu Beginn des Monats über strengen Frost im zweiten Monatsdrittel bis hin zu sommerlichen Bedingungen in den letzten Märztagen. Im Flächenmittel war der März 2021 um 0,5 Grad Celsius zu kühl (1991-2020), im Vergleich zur Klimaperiode 1961 bis 1990 um 0,5 Grad Celsius zu mild. Die höchste Temperatur in diesem Monat wurde am 31. März mit 24,5 Grad Celsius an der Wetterstation in Weyer (426 m)

gemessen. Den tiefsten Wert verzeichnete am 21. März die Klimastation in Reichenau im Mühlkreis (689 m) mit -10,3 Grad Celsius.

In weiten Teilen des Landes war der März niederschlagsarm. Im Flächenmittel summierte sich in Oberösterreich um 40 Prozent weniger Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation am Feuerkogel mit 141 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 21 Liter pro Quadratmeter in Schärding registriert.

Der März 2021 war insgesamt ein durchwegs sonniger Monat. Verglichen mit dem klimatologischen Mittel 1991-2020 schien die Sonne in Oberösterreich um 8 Prozent länger. Mit 165 Sonnenstunden war es in Windischgarsten (600 m) am sonnigsten.

An der ZAMG-Messstelle in Windischgarsten wurde am 11. März die kräftigste Windspitze mit 85 km/h ermittelt.

April

Der April 2021 war nach Angaben der ZAMG der kühlste April seit 1997. Zudem gab es wenig Niederschlag. Der Monatsbeginn war noch geprägt von frühlingshaften Temperaturen und viel Sonnenschein. Ab der Monatsmitte kam es dann zu teils frostigen Kaltlufteinbrüchen. Im Flächenmittel war der April 2021 um 2,9 Grad zu kühl (1991-2020), im Vergleich zur Klimaperiode 1981 bis 2010 um 1,7 Grad zu kalt. Die höchste Temperatur in diesem Monat wurde am 1. April mit 24,0 Grad Celsius an der Wetterstation in Linz (262 m) gemessen. Den tiefsten Wert verzeichnete am 9. April die Klimastation in Windischgarsten (600 m) mit -9,9 Grad Celsius.

In weiten Teilen des Landes war der April niederschlagsarm. Im Flächenmittel summierte sich in Oberösterreich um 42 Prozent weniger Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation am Feuerkogel mit 89 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 12 Liter pro Quadratmeter in Wolfsegg am Hausruck registriert.

Im April 2021 gab es neben den kühlen Witterungsverhältnissen auch zu wenig Sonnenschein. Verglichen mit dem klimatologischen Mittel 1991-2020 schien die Sonne in Oberösterreich um 8 Prozent weniger. Mit 204 Sonnenstunden war es in Aspach (427 m) am sonnigsten.

An der ZAMG-Messstelle in Reichersberg wurde am 5. April die kräftigste Windspitze von 85 km/h ermittelt.

Mai

Der Mai 2021 war rückblickend kühl, feucht und trüb. Nur an wenigen Tagen erreichte das Temperaturniveau im Mai Werte, die oberhalb des klimatologischen Mittels lagen. Einzig vom 9. bis zum 11. Mai stieg die Lufttemperatur auf frühsommerliche Werte. Im Flächenmittel war der Mai 2021 um 2,3 Grad Celsius zu kühl (1991-2020). Die höchste Temperatur in diesem Monat wurde am 10. Mai mit 30,9 Grad Celsius an der Wetterstation in Bad Ischl (507 m) gemessen. Den tiefsten Wert verzeichnete am 8. Mai die Klimastation in Freistadt (539 m) mit -3,2 Grad Celsius.

In vielen Landesteilen entsprachen die Niederschlagsmengen im Mai 2021 dem vieljährigen Mittel oder übertrafen diese. Im Flächenmittel summierte sich in Oberösterreich um 18 Prozent mehr Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Bad Goisern mit 219 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 72 Liter pro Quadratmeter in Freistadt registriert.

In unserem Bundesland zeigte sich die Sonne in diesem Mai, verglichen mit dem Mittel 1991-2020, um rund ein Viertel weniger und gehört nach Angaben der ZAMG damit zu den 20 sonnenärmsten Maimonaten der vergangenen rund 100 Jahre. Mit 174 Sonnenstunden war es in Enns am sonnigsten.

In Enns wurde am 7. Mai auch die kräftigste Windspitze von 97 km/h gemessen.

Juni

Der Juni 2021 war extrem warm, sonnig und im südlichen Teil des Landes auch deutlich zu trocken. In der ersten Monatshälfte lagen die positiven Temperaturanomalien noch in einem moderaten Bereich. Mit der zweiten Monatshälfte begann jedoch eine für Juni ausgesprochen sommerlich warme Phase, die ohne nennenswerte Unterbrechung bis zum Monatsende anhielt. Im Flächenmittel war der Juni 2021 um 2,6 Grad Celsius zu warm (1991-2020). Die höchste Temperatur in diesem Monat wurde am 19. Juni mit 34,7 Grad Celsius an der Luftgütemessstation S409 in Steyr (307 m) gemessen. Den tiefsten Wert verzeichnete am 1. Juni die Klimastation in Freistadt (539 m) mit 1,5 Grad Celsius.

In vielen Landesteilen war es im Juni 2021 zu trocken, im südlichen Bergland sogar viel zu trocken. Im Innviertel gab es stellenweise ausgeglichene, im Mühlviertel sogar verbreitet positive Niederschlagsbilanzen. Im Flächenmittel summierte sich in Oberösterreich um 15 Prozent weniger Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Kollerschlag mit 164 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 26 Liter pro Quadratmeter in Bad Ischl registriert.

Insgesamt schien die Sonne, verglichen mit dem klimatologischen Mittel 1991-2020, um 30 bis 50 Prozent länger. Im Mühlviertel war die Abweichung mit 10 bis 20 Prozent etwas kleiner. Mit 321 Sonnenstunden war es in Enns am sonnigsten.

In Wolfsegg am Hausruck wurde am 22. Juni die kräftigste Windspitze von 103 km/h gemessen.

Juli

Rückblickend gab es im Juli 2021 in Oberösterreich aufgrund von Unwetter verbreitet viel Regen und durchschnittliche Temperaturverhältnisse. Die Sonnenscheindauer lag in vielen Orten leicht unter dem Durschnitt der letzten 30 Jahre. Länger ausgeprägte Hitzewellen gab es in diesem Juli kaum, so hielten sich die Temperaturen im Flächenmittel im Juli 2021 genau an das Klimamittel (1991-2020). Die höchste Temperatur in diesem Monat wurde am 6. Juli mit 34,6 Grad Celsius an der Wetterstation in Weyer (426 m) gemessen. Den tiefsten Wert verzeichnete am 1. Juli die Klimastation in Reichenau im Mühlkreis (689 m) mit 7,4 Grad Celsius.

Die im Juli vorherrschenden Wetterlagen brachten relativ viel Niederschlag. Einen großen Anteil daran hatte die große Zahl an heftigen Unwettern, die meist in einer Südwestströmung über das Land zogen. Im Flächenmittel summierte sich in Oberösterreich um 40 Prozent mehr Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Windischgarsten mit 294 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 102 Liter pro Quadratmeter in Schärding registriert.

Die Sonne tat sich in diesem Monat schwer sich gegenüber den Wolken durchzusetzen. Verbreitet schien die Sonne, verglichen mit dem klimatologischen Mittel 1991-2020, um 11 Prozent seltener. Mit 233 Sonnenstunden war es in Hörsching am sonnigsten.

In Ostermiething wurde am 26. Juli die kräftigste Windspitze von 111 km/h gemessen.

August

Der August 2021 präsentierte sich in Oberösterreich kühl und nass. Die Sonnenscheindauer lag zudem in vielen Orten deutlich unter dem Durschnitt der letzten 30 Jahre. Abgesehen von einer kurzen und regional unterschiedlich ausgeprägten Hitzewelle um die Monatsmitte lag das Temperaturniveau im August 2021 mit -1,6 Grad Celsius unter dem Klimamittel (1991-2020). Die höchste Temperatur in diesem Monat wurde am 15. August mit 32,2 Grad Celsius an der Wetterstation in Windischgarsten (600 m) gemessen. Den tiefsten Wert verzeichnete am 30. August die Klimastation in Freistadt (539 m) mit 4,0 Grad Celsius.

Die im August vorherrschenden Wetterlagen brachten relativ viel Niederschlag. Im Flächenmittel summierte sich in Oberösterreich um 36 Prozent mehr Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Mondsee mit 238 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 109 Liter pro Quadratmeter diesmal in Linz registriert.

Die Sonne tat sich in diesem Monat schwer sich gegenüber den Wolken durchzusetzen. Verbreitet schien die Sonne, verglichen mit dem klimatologischen Mittel 1991-2020, um 30 Prozent seltener. Mit 182 Sonnenstunden war es in Reichersberg am sonnigsten.

In Reichersberg wurde am 7. August auch die kräftigste Windspitze von 121 km/h gemessen.

September

Der September 2021 war in Oberösterreich sonnig, trocken und warm. Das Temperaturniveau lag über weite Strecken oberhalb des Normalbereiches. In Oberösterreich herrschten bis über die Monatsmitte hinaus spätsommerlich warme Temperaturen vor, die sich ab Mitte des Monats allmählich auf ein für die Jahreszeit typisches Niveau einpendelten. Über Oberösterreich gemittelt war der September um 1,4 Grad Celsius wärmer als das Mittel 1991-2020. Die höchste Temperatur in diesem Monat wurde am 9. September mit 28,6 Grad Celsius an der Wetterstation in Weyer/Enns (426 m) gemessen. Den tiefsten Wert verzeichnete am 23. September die Klimastation in Freistadt (539 m) mit 1,6 Grad Celsius.

Die erste Monatshälfte war mit ein paar Ausnahmen weitgehend niederschlagsfrei. In der zweiten Hälfte des

Monats gab es dann häufiger Regen, allerdings nicht genug, um das allgemeine Defizit des Septembers auszugleichen. Im Flächenmittel summierte sich in Oberösterreich um 63 Prozent weniger Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Weyer/Enns mit 106 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 9 Liter pro Quadratmeter diesmal in Kollerschlag registriert.

Der vorherrschende Hochdruckeinfluss sorgte verbreitet für überdurchschnittlich viel Sonnenschein (+30 Prozent). Mit 234 Sonnenstunden war es in Ostermiething am sonnigsten.

In Windischgarsten wurde am 29. September mit 67 km/h die kräftigste Windspitze gemessen.

Oktober

Der Oktober 2021 brachte in Oberösterreich meist sonnige und trockene Witterungsverhältnisse. Das Temperaturniveau lag im Normalbereich. Zwischen dem 6. und 15. Oktober gab es eine etwas kühlere Phase, ansonsten zeigte der Temperaturverlauf in diesem Monat keine extremen Ausreißer. Über Oberösterreich gemittelt war der Oktober um 0,6 Grad Celsius kälter als das Mittel 1991-2020. Die höchste Temperatur in diesem Monat wurde am 3. Oktober mit 25,4 Grad an der Wetterstation in Weyer (426 m) gemessen. Den tiefsten Wert verzeichnete am 25. Oktober die Klimastation in Freistadt (539 m) mit -4,4 Grad Celsius.

Die niederschlagsarmen Verhältnisse des Septembers setzten sich auch im Oktober weiter fort und es fiel in Oberösterreich verbreitet deutlich weniger Niederschlag als in einem durchschnittlichen Oktober. Im Flächenmittel summierte sich in Oberösterreich um 51 Prozent weniger Niederschlag als üblich (1991 bis 2020). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation in Weyer mit 65 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 7 Liter pro Quadratmeter diesmal in Rohrbach registriert.

Im Oktober gab es im gesamten Land verteilt im Mittel um 20 Prozent mehr Sonnenschein. Damit ist der Oktober 2021 ähnlich sonnig wie der Oktober 2019. Mit 174 Sonnenstunden war es in Kollerschlag am sonnigsten. In Wolfsegg wurde am 21. Oktober die kräftigste Windspitze von 78 km/h gemessen.

November

Der November 2021 brachte die für einen Herbstmonat typischen großen Temperaturunterschiede. Das Temperaturniveau lag im Großen und Ganzen im Normalbereich. Eine relativ warme Phase für die Jahreszeit gab es vom 14. bis 24. November, ansonsten lagen die Temperaturen im Durchschnitt. Über Oberösterreich gemittelt war der November um 0,6 Grad Celsius kälter als das Mittel 1991-2020, allerdings um 0,3 Grad Celsius wärmer als das Mittel 1981-2010. Die höchste Temperatur wurde am 1. November mit 17,8 Grad Celsius an der Wetterstation in Windischgarsten (600 m) gemessen. Den tiefsten Wert verzeichnete am 25. November ebenfalls die Klimastation in Windischgarsten (600 m) mit -7,9 Grad Celsius.

Im Großteil Oberösterreichs lagen die Niederschlagsabweichungen im November 2021 meist unter dem Normalbereich. Nur im Salzkammergut und in der Region Pyhrn-Eisenwurzen entsprachen die Niederschlagsmengen dem Klimamittel. Im Flächenmittel (1981 bis 2010) summierte sich in Oberösterreich um 19 Prozent weniger Niederschlag als üblich. Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation am Feuerkogel mit 126 Liter pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 34 Liter pro Quadratmeter diesmal in Wolfsegg am Hausruck registriert.

In diesem November schien die Sonne, verglichen mit dem Mittel 1991-2020, um 1 Prozent länger. Mit 121 Sonnenstunden war es am Feuerkogel am sonnigsten.

Dezember

Der Dezember 2021 war rückblickend bei überdurchschnittlichen Niederschlagsverhältnissen zu warm und verbreitet zu trüb. Während es in den tiefergelegenen Regionen des Landes kaum größere Schwankungen zum für die Jahreszeittypischen Temperaturverlauf gab, verlief der Dezember auf den Bergen in der ersten Dezemberhälfte deutlich kälter als im Mittel. In der zweiten Dezemberhälfte tendierte die Lufttemperatur dann auch in den höher gelegenen Regionen zu überdurchschnittlichen Werten. Über Oberösterreich gemittelt war der Dezember um 1 Grad Celsius wärmer als das Mittel 1991-2020. Die höchste Temperatur in diesem Monat wurde am Silvestertag mit 15 Grad an der Wetterstation in Linz gemessen. Den tiefsten Wert verzeichnete am 23. Dezember die Klimastation in Windischgarsten (600 m) mit -11,6 Grad Celsius.

Im Großteil Oberösterreichs lagen die Niederschlagsabweichungen im Dezember 2021 meist um bzw. über dem Normalbereich. Nur im Mühlviertel, rundum Freistadt lagen die Niederschlagsmengen unter dem Klimamittel. Im Flächenmittel summierte sich in Oberösterreich um 14 Prozent mehr Niederschlag als üblich (1981 bis 2010). Spitzenreiter bei der Niederschlagsmenge war die ZAMG-Wetterstation am Feuerkogel mit 188 Liter

pro Quadratmeter. Die geringste Niederschlagsmenge wurde mit 43 Liter pro Quadratmeter diesmal in Freistadt registriert.

In diesem Dezember schien die Sonne, verglichen mit dem Mittel 1991-2020, um 14 Prozent seltener. Mit 79 Sonnenstunden war es am Feuerkogel am sonnigsten.

9.2 Meteorologische Größen – Messwerte und Auswertungen

Temperatur- und Niederschlagsmaxima, -minima und Mittelwerte

	2021 *		Temp	eratur [G	rad C]		HGT	Niedeı	rschlags [mm]	menge	RT
	2021	JMW	HMAXJ	TMAXJ	HMINJ	TMINJ	1101	JMW	HMAXJ	TMAXJ	1
S425	Freinberg	9,6	34,1	26,9	-10,4	-7,2	3475				
S426	Freinberg2	9,6	31,8	26,8	-10,2	-7,6	3478				
S427	Freinberg3	9,7	32,9	27,7	-10,6	-7,8	3503				
S415	Linz-24er-Turm	10,2	33,6	27,0	-10,3	-6,6	3304				
S416	Linz-Neue Welt	10,3	33,8	28,0	-10,9	-6,3	3282				
S431	Linz-Römerberg	10,5	35,4	28,2	-9,1	-5,6	3204	754	16	31	118
S184	Linz-Stadtpark	10,5	34,4	27,5	-8,8	-5,8	3215				
S173	Steyregg-Au	9,9	34,3	26,6	-10,8	-6,5	3354				
S417	Steyregg-Weih	10,0	33,4	27,2	-9,9	-6,4	3337				
S404	Traun	10,1	34,2	27,1	-12,2	-6,8	3309				
S125	Bad Ischl	9,4	33,7	26,8	-13,0	-7,2	3526	1450	21	99	151
S156	Braunau Zentrum	9,8	34,4	26,3	-12,0	-7,4	3369				
S217	Enns-Kristein 3	10,1	33,8	26,8	-12,9	-7,1	3305				
S235	Feuerkogel	4,3	22,9	20,3	-17,5	-15,7	5431				
S108	Grünbach	6,8	28,0	24,3	-14,9	-11,9	4437				
S255	Kirchschlag bei Linz	6,4	26,4	23,1	-14,7	-12,5	4551				
S432	Lenzing 3	8,9	31,5	25,3	-13,4	-8,0	3699				
S430	Magdalenaberg	8,3	29,6	25,3	-11,8	-9,8	3941				
S409	Steyr	9,7	35,3	27,0	-13,8	-7,6	3475				
S407	Vöcklabruck	9,3	33,1	25,6	-12,4	-7,5	3570				
S406	Wels	10,2	33,6	27,0	-11,8	-7,0	3301				
ENK1:10	Enzenkirchen (UBA)	8,6	31,0	25,7	-11,6	-9,0	3795	749	14	22	114
ZOE2:10	Zöbelboden 2 (UBA)							1547	42	99	152

TEMP Temperatur (Grad C)

HGT Heizgradtage

RM Niederschlagsmenge (mm = Liter/m²)

RT Regentage (Tage mit mehr als 1 mm Niederschlag)

JMW Jahresmittelwert, bei RM Jahressumme

HMAXJ Maximaler HMW des Jahres (bei RM maximale Halbstundensumme)

HMINJ Minimaler HMW des Jahres

TMAXJ Maximaler TMW des Jahres (bei Niederschlag Tagessumme)

TMINJ Minimaler TMW des Jahres

*) Es werden nur ganzjährig betriebene Messstellen angezeigt.

Bei den MIttelwerten für die Temperatur und für die Heizgradtage sind die Maxima rot und die Minima blau dargestellt.

Tabelle 45: Temperatur- und Niederschlagsdaten

			JN	1W		Max.	Summe
	2021 *	RF	GSTR	STRB	WIV	BOE	SONNE
		[%]	[W/m ²]	[W/m²]	[m/s]	[m/s]	[h]
S425	Freinberg				1,7	19,5	
S427	Freinberg3				4,2	34,8	
S415	Linz-24er-Turm	74,7	143,6	50,9	1,4	22,6	
S416	Linz-Neue Welt	75,5		50,1	1,4	23,2	
S431	Linz-Römerberg	74,2			0,8	16,4	
S184	Linz-Stadtpark	74,6			0,8	13,7	
S173	Steyregg-Au	76,9			0,8	15,9	
S417	Steyregg-Weih	76,7	139,8		1,4	28,4	1966
S404	Traun	75,8			2,0	24,0	
S125	Bad Ischl	78,9			0,7	20,3	1810
S156	Braunau Zentrum	79,4			0,9	24,4	
S217	Enns-Kristein 3	77,5			1,8	21,8	
S235	Feuerkogel	75,6					
S108	Grünbach	78,3	144,3		2,9	19,3	
S255	Kirchschlag bei Linz	79,4			4,9	24,6	
S432	Lenzing 3	80,3			1,4	21,1	
S430	Magdalenaberg	76,3			2,6	26,7	
S409	Steyr	79,9			0,9	14,9	
S407	Vöcklabruck	77,6			1,0	17,4	
S406	Wels	75,9			2,5	25,7	
ENK1:10	Enzenkirchen (UBA)	81,4			3,3		1809
ZOE2:10	Zöbelboden 2 (UBA)						

RF Relative Feuchte GSTR Globalstrahlung
STRB Strahlungsbilanz WIV Windgeschwindigkeiten
BOE Windböe SONNE Sonnenscheindauer

Tabelle 46: Jahresmittelwerte der Relativen Feuchte, Globalstrahlung, Strahlungsbilanz, Windgeschwindigkeit, Maximale Windböe und die Summe der Sonnenscheindauer

2021 *		JMW									
		LUFTD	LUFTD0	AKL_T	AKL_S	UVB					
		[hPa]	[hPa]			[mW/m²]					
S415	Linz-24er-Turm	985	1016	4	5						
S416	Linz-Neue Welt				5						
S417	Steyregg-Weih					-					
S125	Bad Ischi	960	1015								
ENK1:10	Enzenkirchen (UBA)	956									
ZOE2:10	Zöbelboden 2 (UBA)										

LUFTD Luftdruck LUFTD0 Luftdruck bezogen auf den Meeresspiegel (Adria)

AKL Ausbreitungsklasse; aus Strahlungsbilanz (AKL_S) oder Temperaturprofil (AKL_T) berechnet

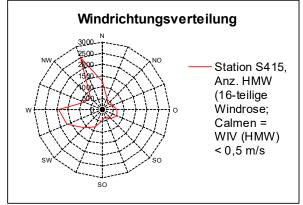
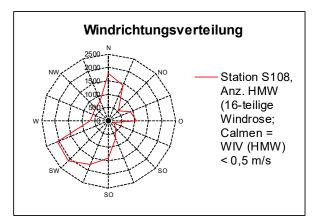

UVB Ultraviolette Strahlung

Tabelle 47: Jahresmittelwerte des Luftdrucks, Ausbreitungsklassen und Ultraviolette Strahlung

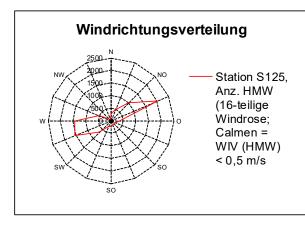
^{*)} Es werden nur ganzjährig betriebene Messstellen angezeigt.

^{*)} Es werden nur ganzjährig betriebene Messstellen angezeigt.

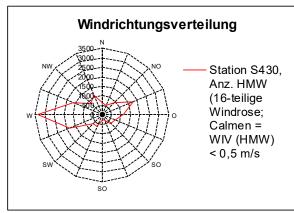

Windrichtungsverteilungen ausgewählter Messstationen

\A/I	п
VVI	к

Zeitraum von Jän 21 bis Dez 21


Linz-24e	S415								
Häufigkeitsverte	Häufigkeitsverteilung der Windrichtungen								
Anz. HMWs Prozent									
Calmen	2386	14%							
Nordost	863	5%							
Ost	1268	7%							
Südost	1072	6%							
Süd	1054	6%							
Südwest	2286	13%							
West	3390	19%							
Nordwest	2085	12%							
Nord	3004	17%							
Gesamt	17408	100%							

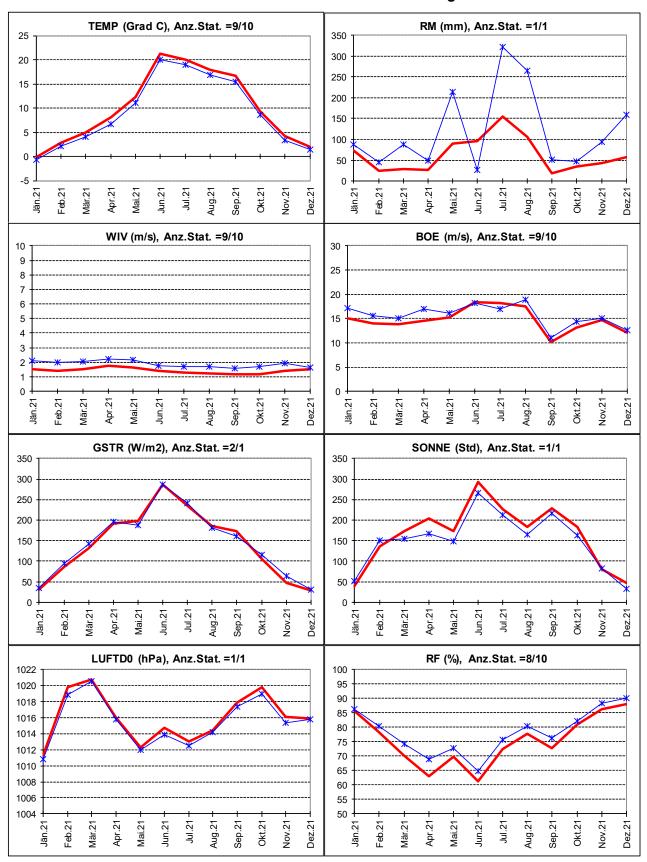
1	1	ı	
v	٧	ı	г


Zeitraum von Jän 21 bis Dez 21

Grünb	S108								
Häufigkeitsverte	Häufigkeitsverteilung der Windrichtungen								
Anz. HMWs Prozent									
Calmen	231	1%							
Nordost	1433	8%							
Ost	1782	10%							
Südost	755	4%							
Süd	2784	16%							
Südwest	4356	25%							
West	1682	10%							
Nordwest	1373	8%							
Nord	2982	17%							
Gesamt	17378	100%							

Zeitraum von Jän 21 bis Dez 21

Bad Isc	hl	S125
Häufigkeitsverteil	ung der Windric	htungen
	Anz. HMWs	Prozent
Calmen	8013	46%
Nordost	2628	15%
Ost	1055	6%
Südost	382	2%
Süd	483	3%
Südwest	1411	8%
West	2694	15%
Nordwest	285	2%
Nord	507	3%
Gesamt	17458	100%


WI	R

Zeitraum von Jän 21 bis Dez 21

Magdalenaberg S									
Häufigkeitsverte	Häufigkeitsverteilung der Windrichtungen								
Anz. HMWs Prozent									
Calmen	427	2%							
Nordost	2113	12%							
Ost	2298	13%							
Südost	1108	6%							
Süd	702	4%							
Südwest	1584	9%							
West	5540	32%							
Nordwest	2085	12%							
Nord	1514	9%							
Gesamt	17371	100%							

Abbildung 44: Häufigkeitsverteilung der Windrichtungen ausgewählter Messstationen

Durchschnittliche Monatsmittelwerte im Raum Linz und im übrigen OÖ

Mittel der Stationen im Raum Linz Mittel der Stationen außerhalb des Raums Linz

Anz. Stat.: z. B. Anz. Stat. = 7/10 heißt, dass 7 Stationen im Raum Linz und 10 Stationen außerhalb gemittelt wurden.

Linz: Freinberg, Linz-24er-Turm, Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Magdalenaberg, Steyregg-Au, Steyregg-Weih, Traun OÖ: Bad Ischl, Braunau Zentrum, Enns-Kristein, Gmunden, Grünbach, Kirchschlag, Lenzing 3, Steyr, Vöcklabruck, Wels

Abbildung 45: Mittlerer Jahresgang der Monatswerte von meteorologischen Größen

9.3 Langzeitvergleich meteorologische Werte

Temperaturtrends und Heizgradtage

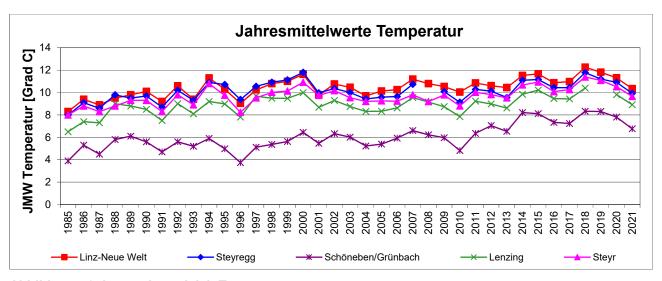


Abbildung 46: Langzeitvergleich Temperatur

Langjähriger Trend der Monats- und Jahresmittelwerte der Temperatur von Steyr

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	30-j. Mittel 1992-2021
Jänner	4,8	0,8	-2,8	-2,5	-0,3	1,8	0,3	0,8	2,2	-0,1	-4,2	3,6	0,2	1,0	0,1	-0,2
Februar	4,5	2,2	0,4	-0,3	0,3	-3,3	-0,3	3,3	0,6	4,9	2,7	-1,2	2,7	5,2	2,1	1,4
März	6,5	4,2	4,8	4,9	5,6	7,5	1,9	7,8	5,7	5,4	7,9	2,7	7,5	6,2	4,6	5,3
April	12,5	8,1	13,5	9,9	12,3	9,7	10,1	11,0	9,9	9,5	8,8	14,8	11,2	11,7	7,5	10,3
Mai	14,6	14,4	15,1	13,3	15,1	15,3	13,2	13,1	14,0	13,9	15,5	17,6	12,1	12,8	12,1	14,7
Juni	18,6	17,9	16,2	17,5	17,9	18,5	16,9	18,2	18,5	18,2	20,8	19,6	22,4	17,8	21,0	18,2
Juli	18,7	17,4	19,2	20,8	17,5	19,4	21,1	19,9	22,8	20,3	20,5	20,9	20,9	19,5	19,9	19,7
August	17,0	17,6	19,6	18,4	20,0	19,8	19,6	17,4	22,4	18,8	20,4	22,0	20,6	20,1	17,5	19,3
September	11,7	12,1	15,9	13,2	15,9	14,6	14,0	14,9	14,2	16,7	13,3	16,0	15,4	15,5	15,8	14,5
Oktober	7,3	8,5	8,8	7,6	9,1	8,7	10,1	11,5	9,4	8,9	10,8	11,8	10,7	9,7	8,6	9,6
November	1,9	5,6	6,3	5,9	3,0	5,3	5,1	6,8	7,2	3,4	4,5	5,7	5,6	4,6	4,0	4,7
Dezember	-1,0	1,3	0,1	-3,4	3,2	0,0	1,7	3,1	3,8	1,0	1,6	2,3	2,9	2,0	2,1	0,8
JMW	9,8	9,2	9,8	8,8	10,0	9,8	9,5	10,7	10,9	10,1	10,3	11,4	11,1	10,5	9,7	9,9
Sommer	18,1	17,6	18,3	18,9	18,9	18,9	19,2	18,5	21,2	19,1	20,5	20,8	21,3	19,1	19,5	19,1
Winter	2,8	1,4	-0,8	-2,1	1,1	-0,5	0,6	2,4	2,2	1,9	0,0	1,5	2,0	2,7	1,4	0,7

JMW 1° C über dem 30-j.Mittel rot, 1° C darunter blau

Tabelle 48: Trend der Temperatur-Monatsmittelwerte

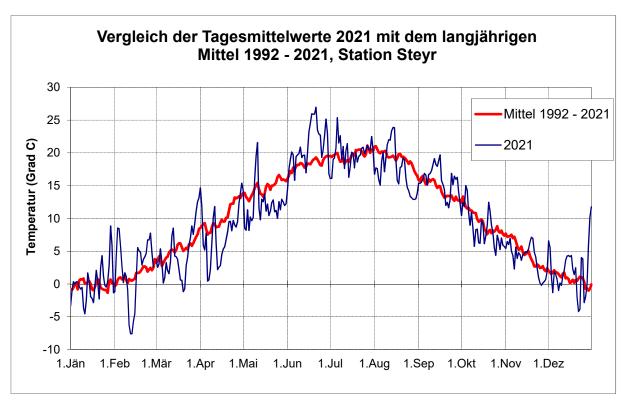


Abbildung 47: Vergleich der Temperatur-TMWs mit dem 30-j. Mittel

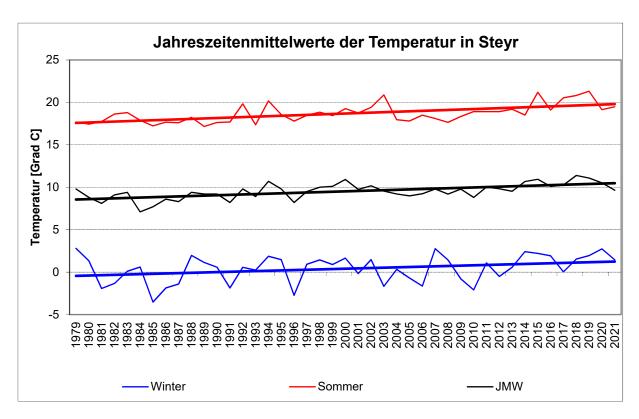


Abbildung 48: Steyr - Langzeittrend Temperatur Jahresmittelwert, Sommer (Juni-August) und Winter (Jänner, Februar, Dezember) ab 1979

Heizgradtage – Jahresübersicht 2021

	S425	S415	S416	S431	S184	S430	S173
2021	Freinberg	Linz-24er- Turm	Linz-Neue Welt	Linz-Römer- berg	Linz-Stadt- park	Magda- lenaberg	Steyregg- Au
Jänner	642	618	619	613	612	671	616
Februar	485	481	476	467	467	509	486
März	465	451	446	439	438	503	451
April	332	315	310	303	306	415	317
Mai	173	127	124	106	115	310	141
Juni	0	0	0	0	0	0	0
Juli	0	0	0	0	0	8	0
August	0	0	0	0	0	45	0
September	18	9	8	8	8	50	8
Oktober	298	286	284	262	268	293	312
November	488	468	465	461	458	521	470
Dezember	573	549	549	545	542	616	552
Jahr	3475	3304	3282	3204	3215	3941	3354

	S417	S404	S125	S156	S217	S235	S108
2021	Steyregg- Weih	Traun	Bad Ischi	Braunau Zentrum	Enns- Kristein 3	Feuerkogel	Grünbach
Jänner	631	623	595	628	616	772	714
Februar	480	484	482	487	488	549	531
März	451	441	486	454	451	657	558
April	311	317	358	330	329	598	490
Mai	146	117	197	112	116	480	362
Juni	0	0	0	0	0	102	17
Juli	0	0	0	0	0	129	19
August	0	0	25	0	0	255	110
September	17	8	27	9	0	251	116
Oktober	281	298	283	316	293	423	319
November	472	472	487	478	466	540	552
Dezember	548	548	586	554	546	675	650
Jahr	3337	3309	3526	3369	3305	5431	4437

	S255	S432	S409	S407	S406	S261
2021	Kirch- schlag bei Linz	Lenzing 3	Steyr	Vöcklabruck	Wels	Met. Gmunden
Jänner	722	647	617	634	613	625
Februar	531	505	501	501	484	482
März	568	487	464	475	444	472
April	500	377	350	365	323	368
Mai	384	224	164	189	115	216
Juni	27	0	0	0	0	0
Juli	21	0	0	0	0	0
August	135	0	0	0	0	8
September	120	35	16	26	0	35
Oktober	336	348	326	337	300	304
November	549	506	481	489	474	493
Dezember	657	570	554	555	548	557
Jahr	4551	3699	3475	3570	3301	3561

Tabelle 49: Heizgradtage (Summe der Differenzen (20 – TMW) bei Tagen mit TMW < 12)

Langjähriger Trend der Heizgradtage von Steyr

Monat	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	20-j. Mittel 2002-2021
Januar	465	596	708	699	628	563	612	596	547	624	752	510	612	588	617	622
Februar	434	517	549	568	552	677	568	467	543	430	477	594	452	422	501	527
März	418	489	472	453	439	372	562	364	444	447	360	535	387	416	464	454
April	146	334	66	250	137	297	223	169	242	289	310	62	196	130	350	223
Mai	109	103	86	110	74	55	122	153	79	102	59	8	155	148	164	94
Juni		18	16	37		8	59						0	0	0	13
Juli	9	9			8								0	0	0	2
August	8	9		18								8	0	0	0	4
September	148	213		63	21	39	92	37	63	16	80	59	29	51	16	59
Oktober	368	325	284	376	298	311	266	162	290	321	224	180	235	285	326	284
November	543	426	403	401	509	441	442	391	345	484	464	409	431	453	481	442
Dezember	649	578	618	726	521	620	566	515	502	590	569	549	523	558	554	587
Jahr Steyr	3296	3617	3203	3702	3188	3384	3514	2854	3054	3302	3295	2914	3021	3050	3475	3312
Heiz- periode Steyr	2508	2607	2750	2847	2649	2674	2751	2332	2381	2573	2622	2597	2406	2437	2617	2632

Tabelle 50: Heizgradtage Langzeittrend Steyr

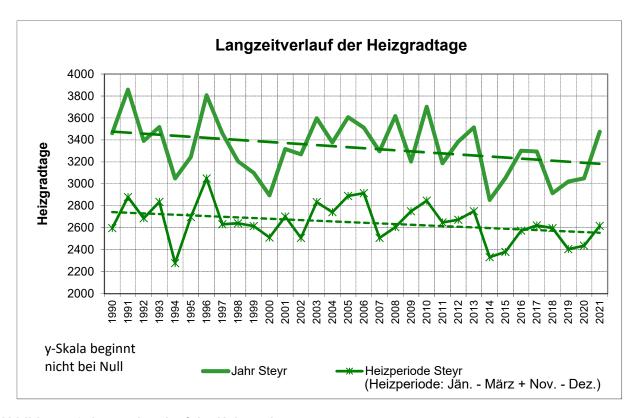


Abbildung 49: Langzeitverlauf der Heizgradtage

10. Messnetz-Informationen

10.1 Kurzbeschreibung des Messnetzes

Das automatische Luftmessnetz Oberösterreichs gibt es seit Jänner 1977. Im Jahr 2021 wurde an insgesamt 30 Stellen gemessen, an 7 davon nur Meteorologie. Von den 23 Schadstoffmessstationen wurden 15 ganzjährig betrieben, die übrigen nur Teile des Jahres. In Oberösterreich liegen zusätzlich auch die Hintergrundmessstationen Enzenkirchen und Zöbelboden, die vom Umweltbundesamt betrieben werden.

Messung und Datenübertragung

Die Stationen sind mit kontinuierlich registrierenden Messgeräten ausgestattet. Ein Rechner steuert die Messgeräte und bildet aus den erfassten Rohdaten Halbstundenmittelwerte.

In der Messnetzzentrale ruft ein Windows-Server (Abt. IT) die Halbstundenmittelwerte und Statusinformationen sowie Gerätefehlermeldungen, Testprotokolle etc. halbstündlich per Mobilfunk ab.

Gleichzeitig wird vom Server auch die Überschreitung von Grenz- und Schwellwerten geprüft und gegebenenfalls eine Meldung an den Bereitschaftsdienst abgesetzt.

Die Halbstundenmittelwerte werden im Stationsrechner etwa 20 Tage lang gespeichert, um eventuelle Störungen in der Datenübertragung sicher zu überbrücken. Ferner können auch Minutenmittelwerte gebildet werden. Diese werden über mehrere Tage in einem Ringpuffer gehalten und können entweder periodisch oder bei Bedarf von der Zentrale abgefragt werden.

Die Routinewartung der Stationen und Messgeräte wird in 14-tägigen Intervallen durchgeführt. Bei den meisten Schadstoffmessgeräten erfolgt etwa einmal am Tag eine automatische Funktionskontrolle durch Aufgabe von Nullgas und Prüfgas. Vierteljährlich wird daraus die Messunsicherheit errechnet sowie mehrmals jährlich die Richtigkeit der Messung mit einem unabhängigen Standard überprüft. Regelmäßig werden die Messgeräte einem Generalservice entsprechend der Herstellerangaben unterzogen.

Ortsfeste und mobile Messungen

Zur dauernden Überwachung von Ballungsräumen und großen Emittenten sowie zur Feststellung langjähriger Trends werden ortsfeste Messstationen benötigt. Die Messkonzeptverordnung legt die minimale Anzahl der Messstellen fest, die in jedem Jahr betrieben werden müssen und welche davon ortsfeste Trendmessstellen sind.

Wenn auf Grund eines Behördenverfahrens oder eines Umweltproblems weitere Messungen nötig sind, werden mobile Messstellen eingesetzt. Diese sind wie die festen Stationen aufgebaut und ausgerüstet. Wartung und Datenprüfung erfolgen analog zu den Fixstationen.

Mobile Messungen werden meist von einer Behörde oder im Zuge eines Behördenverfahrens beauftragt. Nach Abschluss der Messzeit wird ein Bericht erstellt und dem/der Auftraggeber/in zur Kenntnis gebracht. Die Daten von mobilen Messungen, die sich üblicherweise über mehrere Monate bis 1 Jahr erstrecken, werden auch in den periodischen Berichten des Luftmessnetzes publiziert.

Meteorologische Stationen

Aus den Temperaturdaten, die ganzjährig in fünf verschiedenen Höhen im Linzer Raum (Steyregg-Au mit einer Seehöhe von 250 m bis Magdalenaberg mit 660 m) gemessen werden, kann ein Temperaturprofil und daraus Mischungshöhen und Ausbreitungsklassen errechnet werden. Damit können Stärke und Höhe von austauscharmen Luftschichten im Linzer Raum diagnostiziert werden.

Meteorologische Messungen sind immer wieder auch erforderlich, um Grundlagen für die Berechnung von Geruch- und Schadstoffausbreitungen zu liefern. Im Gegensatz zu den mobilen Schadstoffmessungen, bei denen die Messdauer je nach Fragestellung sehr unterschiedlich ist, ist bei den Meteorologie-Messungen in der Regel eine Messdauer von einem Jahr erforderlich.

Mobile Meteorologie-Messstationen bestehen im Wesentlichen aus dem Windmast, den im Freien aufgestellten Sensoren und einem Schrank, in dem der Rechner und das Datenmodem enthalten sind. Ein Solarpanel samt Akku ermöglicht derartige Messungen auch dort, wo kein Stromanschluss vorhanden ist.

Datenprüfung, -speicherung und -auswertung

Bereits bei der Datenerfassung vor Ort werden die von den Geräten empfangenen Messsignale vom Stationsrechner geprüft und z. B. Zeiträume, in denen Fehlerstatusmeldungen des Geräts vorliegen, ausgeschieden (Kontrollstufe 1). In der Messnetzzentrale werden täglich die eingelangten Messdaten gesichtet und auf Plausibilität geprüft (Kontrollstufe 2). Zu dieser Prüfung werden auch die Kenngrößen der Funktionskontrolle und gegebenenfalls die Minutenmittelwerte herangezogen. Bei nicht plausiblen Daten muss das Messgerät vor Ort überprüft werden. Je nach Ergebnis werden die Messwerte dann bestätigt oder verworfen. Am Monatsende erfolgt eine weitere Kontrolle, bevor die Daten für die Monatsberichtserstellung freigegeben werden (Kontrollstufe 3).

Endgeprüft sind die Daten, wenn die Ergebnisse der Richtigkeitsüberprüfung der Messgeräte vorliegen (Kontrollstufe 4). Dann erst wird der Jahresbericht erstellt. Die Daten werden täglich im Landesrechenzentrum gesichert.

Die Auswertungen erfolgen zum Großteil von PCs aus, die mit dem Rechner der Messnetzzentrale (dem "Luftserver") verbunden sind, über eine Schnittstelle von der Luftdatenbank zu Excel.

Die Tagesmittelwerte der gravimetrischen Partikelmessung, die vom Chemisch-Analytischen Labor erstellt wurden, werden zuerst vom dortigen Laborleiter freigegeben und dann als Excel-Tabelle an die Gruppe Luftgüte und Klimaschutz übermittelt. Dort werden sie in die Luftdatenbank eingespielt und ausgewertet.

Sonstige Analysenergebnisse (Staubinhaltsstoffe, Benzol, Staubniederschlag) werden nach Freigabe im Labor als Excel-Tabellen und Grafiken zur Aufnahme in die Berichte übermittelt.

Berichtserstellung und Datenweitergabe

Unmittelbar nach der Übertragung der aktuellen Messwerte von den Stationsrechnern an die Messnetzzentrale werden diese an die Datenbank des Umweltbundesamtes sowie die Daten von Linz an eine Datenbank der Stadt Linz weitergeleitet. Im Gegenzug werden von diesen Institutionen gemessene Luftgütedaten empfangen und in die Messnetzdatenbank integriert.

Die aktuellen (auch die noch nicht gesichteten) Messwerte können über folgende Wege eingesehen werden:

Auf der Homepage des Landes Oberösterreich <u>www.land-oberoesterreich.gv.at</u> können über > Themen > Umwelt und Natur > Luft > im Internet alle Halbstunden-, Stunden- und Tagesmittelwerte der aktuell betriebenen Luftmessstationen eingesehen werden, wobei von der Jetztzeit mehrere Jahre zurückgeblättert werden kann.

Ferner werden Tagesberichte, Monats- und Jahresberichte erstellt. Der Tagesbericht ist am Folgetag im Internet (Adresse wie oben, "Luftgüte-Berichte und Messprogramme") erhältlich, der Monatsbericht erscheint etwa am 15. des Folgemonats, der Jahresbericht im Sommer des Folgejahres. Kurzzusammenfassungen des Monats- und Jahresberichts sind ebenfalls im Internet einzusehen.

Qualitätssicherung

Wesentliche Elemente der Qualitätssicherung im Luftmessnetz sind die regelmäßige Wartung der Messeinrichtungen, periodische Überprüfung und Kalibrierung der Messgeräte, tägliche Sichtung und Kontrolle aller Messdaten, Teilnahme an Ringversuchen sowie die Dokumentation dieser Tätigkeiten. Alle Tätigkeiten werden von entsprechend ausgebildetem Personal durchgeführt, welches Erfahrung mit Arbeiten auf dem Gebiet der Luftgüteüberwachung hat.

Das übergeordnete Qualitätsmanagementsystem erfüllt die Forderungen der Normen EN 17025 und EN 17020. Ein Qualitätsmanagementhandbuch dient als Leitfaden durch das Qualitäts-Management-System. Verfahrensanweisungen beschreiben die qualitätsrelevanten Tätigkeitsabläufe. SOPs (Standard operation procedures = Standardisierte Arbeitsanweisungen) sind unterteilt in Prüf- und Probenahme-, Arbeits-, Geräte- sowie Inspektionsanweisungen. Sie gelten für Mitarbeiter/Mitarbeiterinnen der operativen Ebenen und sorgen dafür, dass alle Vorgänge nachvollziehbar sind.

10.2 Probenahmestellen

Die Probenahme erfolgte nach ÖNORM M5852 an folgenden Stellen (siehe Lageplan Abbildung 50):

Nr.	Name	Anschrift
S271	Ansfelden	4052 Ansfelden, Betriebswerkstätte Ansfelden
S266	Aurolzmünster	4971 Aurolzmünster, Marktplatz bei Bushaltestelle
S125	Bad Ischl	4820 Bad Ischl, Rettenbachwaldstraße, Holzplatz der Gemeinde
S156	Braunau Zentrum	5280 Braunau, Neben Busterminal, Sonderschule
S262	Eferding 2	4070 Eferding, Brandstätterstraße, Polytechnische Schule
S217	Enns-Kristein 3	4470 Enns, nördlich der A1 bei Anschlussstelle B309
S235	Feuerkogel	4802 Ebensee, ca. 100 m westlich der Seilbahn-Bergstation
S425	Freinberg	4020 Linz, Freinbergstr. / ORF-Sender
S108	Grünbach	4264 Grünbach, Bei Kirche St.Michael/Oberrauhenödt
S255	Kirchschlag bei Linz	4202 Kirchschlag bei Linz, BOS-Sendemast
S263	Kremsmünster 2	4550 Kremsmünster, Parkplatz Vetropack
S432	Lenzing 3	4860 Lenzing, Park neben Hauptstraße
S270	Leonding 2	4060 Leonding, Michaelipark
S415	Linz-24er-Turm	4020 Linz, Heilhamerweg, nahe A7 nördlich Voestbrücke
S416	Linz-Neue Welt	4020 Linz, Straßenbahn-Umkehrschleife Wienerstraße
S431	Linz-Römerberg	4020 Linz, Parkplatz Klammstraße
S184	Linz-Stadtpark	4020 Linz, im nördlichen Teil des Stadtparks
S430	Magdalenaberg	4203 Altenberg, Windpassing
S269	Marchtrenk 2	4614 Marchtrenk, Parkplatz Dieselstraße/Freilingerstraße
S261	Met. Gmunden	4810 Gmunden, Höhenweg
S264	Met. Klanigen	4873 Frankenburg, Klanigen
S267	Met. Sinnersdorf	4616 Weißkirchen/Traun, Untersinnersdorf
S409	Steyr	4400 Steyr, Münichholz, Holzstraße
S173	Steyregg-Au	4221 Steyregg, Neben Badeteich/Freizeitanlage
S417	Steyregg-Weih	4221 Steyregg, Weih-Leite
S268	Steyrermühl 4	4663 Laakirchen, Am Aichberg
S404	Traun	4050 Traun, Tischlerstr. (beim Kindergarten)
S407	Vöcklabruck	4840 Vöcklabruck, Ende Untere Agergasse
S265	Vöcklamarkt	4870 Vöcklamarkt, Bahnhofstraße
S406	Wels	4600 Wels, Linzerstr. 85 (Berufschulinternat)
	Externe Betreiber - Umweltb	undesamt
ENK1:10	Enzenkirchen	4761 Enzenkirchen, Kriegen, Kapelle
ZOE2:10	Zöbelboden 2	4462 Reichraming, Zöbelboden, Wildwiese

Tabelle 51: Messstellen im Jahr 2021

10.3 Lageplan der Messstationen

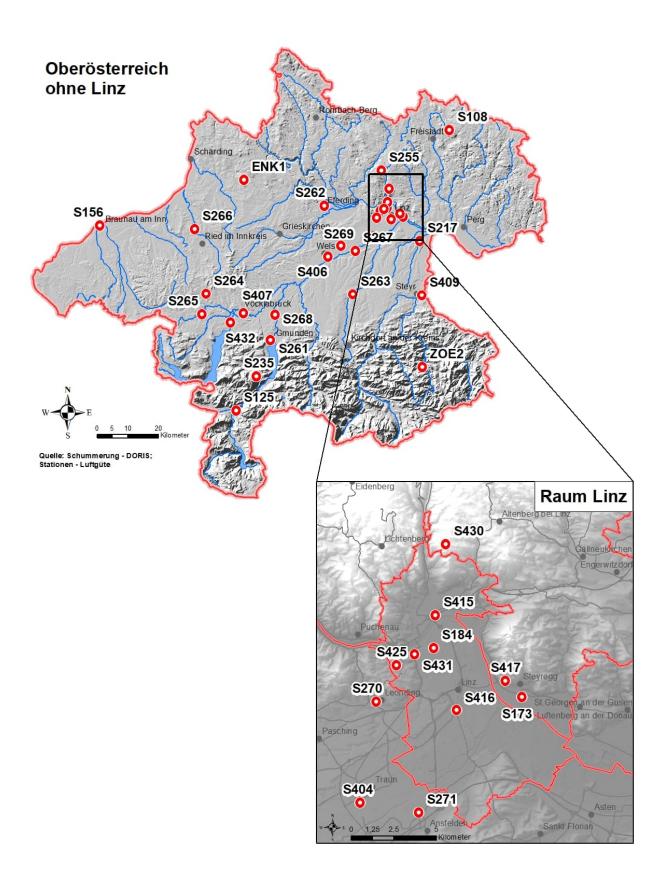


Abbildung 50: Lageplan der Messstationen 2021

10.4 Auftraggeber/in

Dieser Bericht enthält die zusammengefassten Ergebnisse von Immissionsmessungen des Landes Oberösterreich, und zwar:

Im Vollzug von Bundesgesetzen (Auftraggeber ist der Landeshauptmann) für:

- Messungen nach Immissionsschutzgesetz Luft (BGBI. I Nr. 115/1997 idgF)
- Messungen nach Ozongesetz (BGBl. Nr. 210/1992 idgF)

Im Vollzug von Landesgesetzen (Auftraggeberin ist die Oö. Landesregierung) für:

- Messungen nach Oö. Luftreinhalte- und Energietechnikgesetz 2002 (LGBI. Nr. 114/2002 idgF)

Laut Geschäftseinteilung des Amtes der Oö. Landesregierung wird der/die Auftraggeber/in vertreten durch das Amt der Oö. Landesregierung, Direktion Umwelt und Wasserwirtschaft, Abt. Umweltschutz, Goethestraße 86, 4020 Linz, Tel (+43 732) 7720 13643.

Zuständig für behördliche Maßnahmen im Zusammenhang mit den obigen Gesetzen ist die Direktion Umwelt und Wasserwirtschaft, Abteilung Anlagen-, Umwelt- und Wasserrecht, 4021 Linz, Kärntnerstraße 10 - 12, Tel. (+43 732) 7720 12599.

Messungen über gesonderten Auftrag:

Nr.	Messstelle	Auftraggeber/in
S271	Ansfelden	Stadtgemeinde Ansfelden
S266	Aurolzmünster	Marktgemeinde Aurolzmünster
S262	Eferding 2	Stadtgemeinde Eferding
S263	Kremsmünster	Marktgemeinde Kremsmünster
S270	Leonding 2	Stadtgemeinde Leonding
S269	Marchtrenk 2	Stadtgemeinde Marchtrenk
S268	Steyrermühl 4	UPM-Kymmene Austria GbmH
S265	Vöcklamarkt	Marktgemeinde Vöcklamarkt
S261	Met. Gmunden	BH Gmunden
S264	Met. Klanigen	Marktgemeinde Frankenburg a.H.
S267	Met. Sinnersdorf	Oö. Umweltanwaltschaft

Tabelle 52: Messstellen mit gesondertem Auftrag im Jahr 2021 - Auftraggeber

Die Lage der Messstellen ist im Lageplan (Abbildung 50) eingezeichnet. Die Gerätebestückung ergibt sich aus der HMW-Verfügbarkeitstabelle (Seite 80).

10.5 Inspektionsgegenstand

Die Luftqualität im Bundesland Oberösterreich.

Inspektionsspezifikation

- A) Inspektion: Bundesgesetz zum Schutz vor Immissionen durch Luftschadstoffe (Immissionsschutzgesetz Luft, IG-L), BGBI. I Nr. 115/1997 idgF
 - Ausweisung der Überschreitung eines Immissionsgrenzwerts nach § 7 Abs. 1 IG-L, BGBI. I Nr. 115/1997 idgF; Es gilt festzuhalten, ob die Überschreitung auf
 - 1. einen Störfall,
 - 2. eine andere in absehbarer Zeit nicht wiederkehrende erhöhte Immission,
 - die Aufwirbelung von Partikeln nach der Ausbringung von Streusand, Streusalz oder Splitt auf Straßen im Winterdienst oder
 - 4. Emissionen aus natürlichen Quellen

zurückzuführen ist.

- Beurteilung der Erfordernis einer Statuserhebung nach § 8 Abs. 1 IG-L, BGBI. I Nr. 115/1997 idgF
- B) Inspektion: Bundesgesetz über Maßnahmen zur Abwehr der Ozonbelastung und die Information der Bevölkerung über hohe Ozonbelastungen, mit dem das Smogalarmgesetz, geändert wird (Ozongesetz) BGBI. Nr. 210/1992 idgF
 - Feststellung von Überschreitungen nach § 7 Ozongesetz, BGBl. Nr. 210/1992 idgF
 - Information und Empfehlungen an die Bevölkerung nach § 8 Ozongesetz, BGBI. Nr. 210/1992 idgF
 - Entwarnung an die Bevölkerung nach § 10 Ozongesetz, BGBl. Nr. 210/1992 idgF

Die Prüfungen wurden in der eigenen Prüfstelle 0187 gemäß folgender Prüfspezifikationen durchgeführt.

10.6 Prüfspezifikation

Akkreditierte Verfahren

Komponente	Dokumentennummer (Ausgabe), Titel der Norm	Anmerkung
SO ₂	EN 14212 (2012-08) Außenluft - Messverfahren zur Bestimmung der Konzentration von Schwefeldioxid mit Ultraviolett-Fluoreszenz	Verwendete Messgerätetypen: APSA 370, TE 43i
Staub/ PM ₁₀ / PM _{2,5} gravi- metrisch	EN 12341 (2014-05) Außenluft - Gravimetrisches Standardmessverfahren für die Bestimmung der PM ₁₀ - oder PM _{2,5} -Massenkonzentration des Schwebstaubes	Verwendeter Probensammler: Digitel HVS DHA80
STAUB/ PM ₁₀ /PM _{2,5} kontinuier- lich	QMSOP-PR-002/LG (2015-09) Kontinuierliche Immissionsmessung von Partikeln Anm.: Neue Norm für kontinuierliche Messgeräte (CEN/TS 16450) gilt nur für nach dieser Norm eignungsgeprüfte Messgeräte. Laut geltender IG-L-Messkonzeptverordnung keine Referenzmethode!)	Verwendete Messgerätetypen: Grimm EDM 180 Zur PM ₁₀ -Messung siehe auch 2.1.3. Exkurs – Messung und Be- wertung von partikelförmigen Schadstoffen
NO und NO ₂	EN 14211 (2012-08) Luftqualität - Messverfahren zur Bestimmung der Konzentration von Stickstoffdioxid und Stickstoffmonoxid mit Chemilumineszenz	Verwendete Messgerätetypen: APNA 370, API 200, TE 42i
со	EN 14626 (2012-08) Außenluft - Messverfahren zur Bestimmung der Konzentration von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie	Verwendete Messgerätetypen: APMA 370
H₂S	EN 14212 (2012-08) Außenluft - Messverfahren zur Bestimmung der Konzentration von Schwefeldioxid mit Ultraviolett-Fluoreszenz, Erweiterung um Schwefelwasserstoff mit vorgeschaltetem Konverter; Abweichungen entsprechend UBA-Leitfaden zur Immissionsmessung nach IG-Luft	Verwendete Messgerätetypen: APSA 370

Komponente	Dokumentennummer (Ausgabe), Titel der Norm	Anmerkung
O ₃	EN 14625 (2012-08) Außenluft - Messverfahren zur Bestimmung der Konzentration von Ozon mit Ultraviolett-Photometrie	Verwendete Messgerätetypen: APOA 370, API 400, TE 49i
Staubnieder- schlag	VDI 4320 Blatt 2 (2012-01) Messung atmosphärischer Depositionen – Bestimmung des Staubniederschlags nach der Bergerhoff-Methode Aufschluss zur Stoffbestimmung - EN 15841 (2009-11) Luftbeschaffenheit – Messverfahren zur Bestimmung von Arsen, Cadmium, Blei und Nickel in atmosphärischer Deposition	
Benzol pas- siv	EN 14662-5 (2005-05) Außenluftbeschaffenheit - Standardverfahren zur Bestimmung von Benzolkonzentrationen – Teil 5: Diffusionsprobenahme mit anschließender Lösemitteldesorption und Gaschromatographie	Probenahme durch Passiv-Sampling auf Aktivkohle (ORSA) und Desorption mit Schwefelkohlenstoff – analytische Messung mittels Gaschromatographie / Massenspektrometrie - Kopplung
Schwerme- tallanalytik	EN ISO 17294-2 (2016-08) Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von ausgewählten Elementen einschließlich Uran-Isotope (EN ISO 17294-2:2016)	
lonenanaly- tik	EN ISO 10304-1 (2009-03) Wasserbeschaffenheit - Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie - Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat (ohne Bromid, zusätzlich Oxalat) EN ISO 14911 (1999-08) Wasserbeschaffenheit - Bestimmung der gelösten Kationen Li ⁺ , Na ⁺ , NH ₄ ⁺ , K ⁺ , Mn ²⁺ , Ca ²⁺ , Mg ²⁺ , Sr ²⁺ und Ba ²⁺ mittels Ionenchromatographie - Verfahren für Wasser und Abwasser (ohne Li, Mn, Sr und Ba)	
Benzo[a]py- ren und PAHs	ÖNORM EN 15549 (2008-06) Luftbeschaffenheit – Messverfahren zur Bestimmung der Konzentration von Benzo[a]pyren in der Luft	Analytische Messung mittels Gas- chromatographie / Massenspektro- metrie - Kopplung

Tabelle 53: Akkreditierte Verfahren

Nichtakkreditierte Verfahren zur Erfassung ergänzender Messgrößen für die Immissionsüberwachung

Windrichtung, Windgeschwindig- keit, Böe, Relative Feuchte, Luft- temperatur, Strahlungsbilanz, Re- genmenge, Globalstrahlung, Son- nenscheindauer, Luftdruck	Die Messung dieser Komponenten erfolgt nach den beiden Arbeitsanweisungen: Kalibrierung u. Richtigkeitsüberprüfung v. meteorologischen Geräten (QMSOP-GA-003/LG) bzw. Wartung von meteorologischen Messgeräten (QMSOP-GA-006/LG).
Sonstige Messverfahren: UV-B-Strahlenbelastung	Gerät des BMLFUW, gewartet und kalibriert von der Uni Innsbruck
Messungen vom Umweltbundes- amt in Enzenkirchen und Zöbel- boden	Die über den Immissionsdatenverbund importieren Messdaten des Umweltbundesamtes für die Messstationen Enzenkirchen und Zöbelboden werden informativ angeführt. Sie werden vom Messnetz des Umweltbundesamtes erhoben und sind nicht Teil der Inspektionsstelle der Umwelt Prüf- und Überwachungsstelle des Landes Oö.

Tabelle 54: Nichtakkreditierte Verfahren

Messunsicherheit

Es ist bei den akkreditierten Verfahren zur Messung gasförmiger Schadstoffe mit einer kombinierten Messunsicherheit von maximal ± 15 Prozent zu rechnen (Vertrauensniveau 95 Prozent).

Bei der Partikelmessung ist laut EU-Luftqualitätsrichtlinie 2008/50/EG eine kombinierte Messunsicherheit von 25 Prozent zulässig. Nach den Ergebnissen der bisher durchgeführten Äquivalenztests wird das von den gravimetrischen Verfahren und von den optischen Partikelmessgeräten von Grimm eingehalten, wobei diese mit einem standortabhängigen Faktor zu korrigieren sind. Ab 2010 dürfen zur Überwachung der Einhaltung von Grenzwerten nur mehr Verfahren eingesetzt werden, die den Äquivalenztest bestanden haben.

10.7 HMW-Verfügbarkeit

Tabelle 55 und **Tabelle 56** zeigen den Prozentsatz gültiger Werte von insgesamt maximal 17.520 HMWs pro Datenreihe im Jahr 2021.

*) Mobile Messstationen werden manchmal nur monatsweise bzw. für einen bestimmten Zeitraum (oft ein Jahr, jedoch unabhängig vom Kalenderjahr) betrieben.

nabnangig	vom Kalenderjahr) bet	rieben													
	2021	SO_2	PM₁₀ kont#2	PM ₁₀ g	PM ₂₅ kont	ON	NO2	00	03	WIR	ΛIM	BOE	A_VIW	TEMP	RF
Langzeit	messstellen für Scha	dstoff	e und	Mete	orolog	gie									
S415	Linz-24er-Turm	97	99		99	97	97			99	99	99	99	99	99
S416	Linz-Neue Welt	97	100	100	100	97	97	98	97	100	100	100	100	100	100
S431	Linz-Römerberg		100	100	100	97	97	97		100	100	100	100	100	100
S184	Linz-Stadtpark		100	100	100	98	98		97	100	100	100	100	100	100
S173	Steyregg-Au	96	99		99	96	96	97		99	99	99	99	99	99
S404	Traun		99	96	99	97	97		94	99	99	99	99	99	99
S125	Bad Ischl		100	3	100	97	97		97	100	100	100	100	100	100
S156	Braunau Zentrum	91	99	85	99	97	97		96	99	99	99	99	98	98
S217	Enns-Kristein 3		100	100	100	97	97	97		100	100	100	100	100	100
S235	Feuerkogel		98		98				96					100	100
S108	Grünbach	97	96		96	97	97		96	99	99	99	99	99	99
S432	Lenzing 3	96	96		96	97	97		96	99	99	99	99	99	99
S409	Steyr	97	100	3	100	97	97		97	100	100	100	100	100	100
S407	Vöcklabruck	97	99		99	97	97		3	99	99	99	99	99	99
S406	Wels	96	99	100	99	96	96	97	96	99	99	99	99	99	99
Langzeit	messstellen für Metec	orolog	jie												
S425	Freinberg									100	100	100	100	100	
S426	Freinberg2													100	
S427	Freinberg3									100	100	100	100	100	
S255	Kirchschlag bei Linz									93	93	93	93	100	100
S430	Magdalenaberg									99	99	99	99	99	99
S417	Steyregg-Weih									100	100	100	100	100	100
Mobile M	essstellen*														
S271	Ansfelden	15	15		15	15	15			15	16	16	16	16	16
S266	Aurolzmünster		99		99	97	97			99	99	99	99	99	99
S262	Eferding 2		29		29	28	28			28	28	28	28	29	29
S263	Kremsmünster 2		40		40	39	39			40	40	40	40	40	40
S270	Leonding 2		56		56	54	54			56	56	56	56	56	56
S269	Marchtrenk 2		60		60	58	58			60	60	60	60	60	60
S268	Steyrermühl 4	54	55		55	54	54			55	55	55	55	55	55
S265	Vöcklamarkt	28	41		41	43	43			43	43	43	43	44	44
S261	Met. Gmunden									99	99	99	99	100	100
S264	Met. Klanigen									29	29	29	29	30	30
S267	Met. Sinnersdorf	1	-	-	-	-	1	1	-	48	48	48	48	48	48

Tabelle F	ortsetzung														
	2021	^z OS	PM ₁₀ kont#2	PM₁₀ g	PM ₂₅ kont	ON	^Z ON	00	03	WIR	ΛIM	BOE	A_VIW	TEMP	RF
Messstel	len des Umweltbunde	samt	s												
ENK1:10	Enzenkirchen	96	98		98	97	97		96	100	100			100	100
ZOE2:10	Zöbelboden 2 (UBA)	96	98		98	97	97		95	86	86			50	50
	Anzahl Messstellen	14	25	9	25	24	24	5	13	32	32	30	30	34	31

Tabelle 55: HMW-Verfügbarkeit

	2021	PM ₂₅ g	PM ₁ kont	H ₂ S	GSTR	RM	STRB	LUFTD	SONNE	UVB	STABI	МН	AKL_S	AKL_T
S415	Linz-24er-Turm				99		93	99					93	99
S416	Linz-Neue Welt			97			97				96	96	97	
S431	Linz-Römerberg	3				100								
S184	Linz-Stadtpark	100	100											
S173	Steyregg-Au	95												
S125	Bad Ischl					100		100	100					
S108	Grünbach		72		99									
S432	Lenzing 3	99		97										
S407	Vöcklabruck			96										
S406	Wels	99												
S417	Steyregg-Weih				100				100	53				
S271	Ansfelden			15										
S270	Leonding 2				55									
S268	Steyrermühl 4			54										
S265	Vöcklamarkt			28	43									
S261	Met. Gmunden						96						95	
S264	Met. Klanigen						27						26	
S267	Met. Sinnersdorf						47						47	
ENK1:10	Enzenkirchen					100		100	100					
ZOE2:10	Zöbelboden 2 (UBA)				20	88	86	50	74				86	
	Anzahl Messstellen	5	2	6	6	4	6	4	4	1	1	1	6	1

Tabelle 56: HMW-Verfügbarkeit 2

Anzahl Messstationen (inklusive UBA-Stationen): 32 Anzahl Schadstoffmessgrößen: 152 Anzahl meteorologische Messgrößen: 223 Gesamtanzahl gültige Messwerte 5.386.500 (ohne UBA-Stationen 4.942.696)

10.8 Messnetz-Nachrichten

Eferding 2 (S262)

Um den Standort für einen Kindergarten mit Spielplatz abzuklären, ersuchte die Stadtgemeinde Eferding um eine Messung. Die Messungen wurden von 5. Mai 2020 bis 15. April 2021 durchgeführt und der Messbericht auf der Landeshomepage veröffentlicht.

Kremsmünster 2 (S263)

In Kremsmünster fühlen sich Anrainer einer Firma durch Staub und Lärm belästigt. Es wurde daher vom 12. Mai 2020 bis 25. Mai 2021 die Luftqualität gemessen. Der Messbericht ist auf der Landeshomepage zu finden.

Vöcklamarkt (S265)

In Vöcklamarkt gibt es Beschwerden über die Immissionen, die durch ein Sägewerk und durch den LKW Verkehr verursacht werden. Es wurde eine Immissionsmessung für die Dauer eines Jahres durchgeführt, die am 25. Mai 2020 gestartet und mit 9. Juni 2021 beendet wurden. Der Messbericht ist auf der Homepage des Landes Oberösterreich veröffentlicht.

Aurolzmünster (S266)

Um die Immissionen bei der stark befahrenen Bundesstraße B143 im Ortszentrum von Aurolzmünster zu erfassen, wurde im Auftrag der Marktgemeinde am 16. November 2020 zu messen begonnen.

Steyrermühl 4 (S268)

Mit Hilfe einer Messung im Nachbarschaftsbereich vom 15. April – 4 Nov. 2021 wurde die Abklärung von Geruchsbelästigungen unterstützt.

Marchtrenk 2 (S269)

Um die Hintergrundbelastung in einem Siedlungsgebiet von Marchtrenk zu erfassen, ersuchte die Marktgemeinde Marchtrenk um eine Messung. Die Messungen begannen mit 27. Mai 2021.

Leonding 2 (S270)

Auch in Leonding soll die Hintergrundbelastung ermittelt werden. Dazu ersuchte die Marktgemeinde Leonding um eine Messung, die am 10. Juni 2021 gestartet wurde.

Ansfelden (S271)

Die Marktgemeinde Ansfelden beauftragte eine Messung der Luftqualität mit dem Ziel, die Auswirkungen der hochrangigen Verkehrsträger A1, L1392 und L563 auf die umliegenden Siedlungsräume für weitere Planungen zu erheben. Die Messung wurde am 5. Nov. 2021 gestartet.

Met. Klanigen (\$264)

Die meteorologische Messstation Klanigen in Frankenmarkt wurde vom 12. Mai 2020 bis 20. April 2021 betrieben und diente der Abklärung der meteorologischen Verhältnisse zu einem geplanten Tierhaltungsbetrieb.

Met. Sinnersdorf (S267)

Die sechsmonatige meteorologische Messung in Sinnersdorf in Weißkirchen an der Traun diente der Abklärung von Geruchsbelästigungen aus einem Tierhaltungsbetrieb. Es wurde vom 20. April 2021 bis 15. Oktober 2021 gemessen.

Feuerkogel (S235)

Das Umweltbundesamt erstellt aus den Messdaten der Länder täglich eine Prognosekarte der Ozonbelastung. Um die Verhältnisse auch im Gebirge richtig wiederzugeben, sind Messungen in verschiedenen Höhen notwendig. In den Nordalpen fehlten lange Messstellen in Höhen über 1000 m. Mit den Daten der seit April 2015 betriebenen Station Feuerkogel hat sich die Prognose für Oberösterreich in allen Höhenlagen verbessert

Es ist nicht geplant, für ganz OÖ Ozonwarnungen auszurufen, sollte einmal nur der Feuerkogel über der Informationsschwelle liegen, da die Standortkriterien der Ozonmesskonzeptverordnung, die im § 9 Abs. 4 auf den Anhang VIII der Luftqualitäts-RL verweist, Berggipfel ausnimmt.

Messungen in 1500 m Höhe sind auch interessant zur Detektion von Ferntransportphänomenen wie Saharasand, Vulkanasche oder auch aus dem Tal aufgestiegenen Abgasen. Daher wurde die Station ab 2016 mit Messgeräten für PM₁₀ bzw. PM_{2,5} aufgerüstet.

PM₁₀-Messung

Im Jahr 2021 erfolgte die Überwachung des PM₁₀-Grenzwerts an 7 Messstellen mit gravimetrischen High Volume -Sammlern, an den übrigen Messstellen mit optischen Partikelmessgeräten (Grimm). Da mit der gravimetrischen Methode nur Tagesmittelwerte erhalten werden, und zwar mit bis zu 3 Wochen Verzug, wird zur aktuellen Online-Berichterstattung bei allen Gravimetrie-Messstellen parallel auch ein kontinuierliches Gerät betrieben. Zur Beurteilung der Überschreitungen wird bei allen Parallelmessungen nur der gravimetrische Wert verwendet.

PM_{2,5}-Messung

Mit den optischen Partikelmessgeräten kann parallel zu PM₁₀ auch PM_{2,5} erfasst werden. Zusätzlich zu den beiden kontinuierlich betriebenen gravimetrischen Messungen in Linz-Stadtpark und Wels wurden alle Messstellen seit 2016 mit den optischen Grimm-Geräten ausgerüstet, sodass die feinere Staubfraktion überall gemessen werden kann. Im Jahr 2021 wurde zudem an der Messstation Steyregg-Au und in Lenzing 3 eine gravimetrische PM_{2,5} Messung durchgeführt.

Evaluierung der Partikelmessung

Das Referenzverfahren für die Messung von PM₁₀ und PM_{2,5} ist die Gravimetrie. Kontinuierliche Messverfahren müssen mit einer Korrekturfunktion an die Gravimetrie angepasst werden. Da die Korrekturfaktoren von der Staubzusammensetzung abhängen, müssen sie regelmäßig (ca. alle 5 Jahre) durch eine Parallelmessung überprüft und gegebenenfalls angepasst werden.

2021 wurden Parallelmessungen von PM₁₀ in Linz-Neue Welt, Linz-Römerberg, Linz-Stadtpark, Traun, Braunau Zentrum, Enns-Kristein, und Wels sowie von PM_{2,5} in Linz-Stadtpark, Steyregg-Au, Lenzing 3 und Wels durchgeführt.

Aufgrund der Parallelmessungen wurden die Korrekturfaktoren der Stationen überprüft und gegebenenfalls angepasst.

CLAIRISA (Climate and Air Information System for Upper Austria)

DORIS interMAP - CLAIRISA

Die interaktive Webanwendung CLAIRISA erlaubt die Abfrage von Klima- und Luftgütedaten sowie Klimaszenarien für jeden Ort in Oberösterreich. Damit stehen wichtige Basisdaten – nicht nur für die Planung von Maßnahmen zur Klimawandelanpassung – zur Verfügung.

Grundlage sind meteorologische Daten von mehr als 200 Wetter- und Luftmessstationen in ganz Oberösterreich im Zeitraum 1981 bis 2010. Weitere wertvolle Informationen über die Klimaentwicklung liefert der Dachsteingletscher. Darauf aufbauend hat die Universität für Bodenkultur in Wien Klimaszenarien bis zum Jahr 2100 berechnet.

Die Daten sind in digitalen Karten und Informationsblättern mit Tabellen, Grafiken und textlicher Analyse dargestellt.

11. Übersicht über österreichische und internationale Grenzwerte

11.1 Österreichische Immissionsgrenzwerte

11.1.1 Grenzwerte des Immissionsschutzgesetz - Luft

BGBI. I Nr. 115/1997 idgF

Anlage 1: Konzentration zu § 3 Abs. 1

Anlage 1a: Immissionsgrenzwerte

Als Immissionsgrenzwert der Konzentration zum dauerhaften Schutz der menschlichen Gesundheit in ganz Österreich gelten die Werte in nachfolgender Tabelle:

Konzentrationswerte in μg/m³ (ausgenommen CO: angegeben in mg/m³; Arsen, Kadmium, Nickel, Benzo(a)pyren: angegeben in ng/m³)

Luftschadstoff	HMW	MW8	TMW	JMW
Schwefeldioxid	200 *)		120	
Kohlenstoffmonoxid		10		
Stickstoffdioxid	200			30 **)
PM ₁₀			50 ***)	40
Blei in PM ₁₀				0,5
Benzol				5
Arsen				6 ****)
Kadmium				5 ****)
Nickel				20 ****)
Benzo(a)pyren				1 ****)

^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 µg/m³ gelten nicht als Überschreitung.

Anlage 1b: Immissionsgrenzwert für PM_{2,5} zu § 3 Abs. 1

Als Immissionsgrenzwert der Konzentration von PM_{2,5} gilt der Wert von 25 μg/m³ als Mittelwert während eines Kalenderjahres (Jahresmittelwert). Der Immissionsgrenzwert von 25 μg/m³ ist ab dem 1. Jänner 2015 einzuhalten.

Anlage 2: Deposition zu § 3 Abs. 1

Als Immissionsgrenzwert der Deposition zum dauerhaften Schutz der menschlichen Gesundheit in ganz Österreich gelten die Werte in folgender Tabelle:

Luftschadstoff	Depositionswerte in mg/(m²*d)
	als Jahresmittelwert
Staubniederschlag	210
Blei im Staubniederschlag	0,100
Cadmium im Staubniederschlag	0,002

^{**)} Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei Inkrafttreten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend ab 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend ab 1. Jänner 2010. Im Jahr 2012 ist eine Evaluierung der Wirkung der Toleranzmarge für die Jahre 2010 und 2011 durchzuführen. Auf Grundlage dieser Evaluierung hat der Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft im Einvernehmen mit dem Bundesminister für Wirtschaft, Familie und Jugend gegebenenfalls den Entfall der Toleranzmarge mit Verordnung anzuordnen.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab Inkrafttreten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

^{****)} Gesamtgehalt in der PM₁₀-Fraktion als Durchschnitt eines Kalenderjahres.

Anlage 4: Alarmwerte zu § 3 Abs. 2

Als Alarmwerte gelten nachfolgende Werte:

Schwefeldioxid: 500 µg/m³, als gleitender Dreistundenmittelwert gemessen.

Stickstoffdioxid: 400 µg/m³, als gleitender Dreistundenmittelwert gemessen.

Anlage 5: Zielwerte zu § 3 Abs

Anlage 5a Zielwert für Stickstoffdioxid

Als Zielwert der Konzentration von Stickstoffdioxid gilt der Wert von 80 µg/m³ als Tagesmittelwert.

(Anm.: Anlagen 5b und 5c aufgehoben durch Art. 3 Z 37, BGBI. I Nr. 58/2017)

Anlage 6: Allgemeine Bestimmungen

a) Eine Überschreitung eines Immissionsgrenzwerts eines bestimmten Luftschadstoffes liegt unter Berücksichtigung der festgelegten Überschreitungsmöglichkeiten und Toleranzmargen dann vor, wenn bei einem Immissionsgrenzwert auch nur ein Messwert oder ein errechneter Wert numerisch größer als der Immissionsgrenzwert ist. Ein Messwert ist dann größer als der Immissionsgrenzwert, wenn die letzte Stelle des Immissionsgrenzwerts um die Ziffer "1" überschritten wird; sind die Messwerte um eine Stelle genauer angegeben, ist der Immissionsgrenzwert überschritten, wenn diese Stelle größer/gleich der Ziffer "5" ist.

- b) Die Konzentrationswerte für gasförmige Luftschadstoffe sind auf 20 °C und 1 013 hPa zu beziehen.
- c) Die Berechnung der zur Beurteilung erforderlichen Mittelwerte hat gemäß folgender Tabelle zu erfolgen:

Mindestanzahl der gültigen Halbstundenmittelwerte (HMW) bzw. Tagesmittelwerte (TMW) zur Berechnung von Kennwerten:

Kennwert	Mindestanzahl der HMW
D : (1 (1 (1 (1 (1 (1 (1 (1 (1 (
Dreistundenmittelwert (MW3)	4
Achtstundenmittelwert (MW8)	12
Tagesmittelwert (TMW)	401)
Wintermittelwert	75 Prozent in jeder Hälfte der Beurteilungsperiode
Perzentile oder Summenhäufigkeitswerte	75 Prozent in jeder Hälfte der Beurteilungsperiode
Kennwert	Mindestanzahl der TMW
Jahresmittelwert (JMW)	90 Prozent ²⁾ während des Jahres

- d) Im Sinne der Anlagen 1 und 2 dieses Gesetzes steht die Bezeichnung
 - 1. "HMW" für Halbstundenmittelwert,
 - 2. "MW8" für Achtstundenmittelwert (gleitende Auswertung, Schrittfolge eine halbe Stunde),
 - 3. "TMW" für Tagesmittelwert,
 - 4. "JMW" für Jahresmittelwert.

Anlage 8: Verpflichtung in Bezug auf den AEI zu § 3 Abs. 4, § 3a, § 7 Abs. 2 und § 9a Abs. 1a

Als Verpflichtung in Bezug auf den AEI (§ 2 Abs. 23) gilt der Wert von 20 µg/m³. Der AEI wird berechnet als Durchschnittswert über alle Jahresmittelwerte der Messstellen, die gemäß der Verordnung gemäß § 4 zur Berechnung des AEI herangezogen werden.

Die Ausweisung der Überschreitung nach § 7 Abs. 2 wird für die folgenden Jahre geprüft und durchgeführt (die erste Prüfung wird ausnahmsweise nicht über einen Drei-, sondern über einen Zweijahreszeitraum durchgeführt):

- 1. 2009, 2010
- 2. 2009, 2010, 2011
- 3. 2010, 2011, 2012
- 4. 2011, 2012, 2013
- 5. 2012, 2013, 2014
- 6. 2013, 2014, 2015

Zur Berechnung der einzelnen Verpflichtungen wird folgender Algorithmus herangezogen:

- (1) Die Durchschnittsmesswerte berechnet über die jeweiligen Jahre werden für alle Messstationen aufsteigend angeordnet. Die Zahl der Messstellen insgesamt ist g, die Zahl der Messstellen mit einem Durchschnittswert von maximal 20 μ g/m³ ist r.
- (2) Beginnend mit der Messstelle mit dem niedrigsten Durchschnittsmesswert über 20 µg/m³ wird für jedes j

der Reihe nach folgende Berechnung durchgeführt:

$$X_j = \frac{M_j - 20}{M_j}$$

Mj ... Durchschnittsmesswert über die jeweiligen Jahre an der Station j

¹⁾ Um systematische Einflüsse (Tagesgang) zu vermeiden, sind in diesem Fall mehr als 75 Prozent der HMW des Tages erforderlich.

²) Datenverluste aufgrund regelmäßiger Kalibrierung oder üblicher Gerätewartung sind in der Anforderung für die Berechnung des Jahresmittelwerts nicht berücksichtigt.

$$S_{j} = \frac{1}{g} \left\{ \sum_{i=1}^{r} M_{i} + (1 - X_{j}) \sum_{i=j}^{g} M_{i} + 20 (j - r - 1) \right\}$$

(3) Nach jeder einzelnen Berechnung wird eine Fallunterscheidung durchgeführt:

(a) Sj < 20. In diesem Fall können die zu erreichenden Durchschnittswerte für 2013, 2014 und 2015 durch Senken der berechneten Durchschnittswerte der Messstationen von über 20 μ g/m³ um den gleichen Prozentsatz derart verringert werden, dass der Durchschnitt 2013, 2014 und 2015 über alle Messstationen 20 μ g/m³ beträgt:

$$p = 1 - \left\{ \frac{20g - \sum_{i=1}^{r} M_i - 20(j - r - 1)}{\sum_{i=j}^{g} M_i} \right\}$$

Die zu erreichenden Durchschnittswerte für 2013, 2014 und 2015 sind dann um je 100p Prozent geringer als die jeweiligen Durchschnittswerte im Zeitraum der Überschreitung.

(b) Sj = 20. In diesem Fall sollen die zu erreichenden Durchschnittswerte für 2013, 2014 und 2015 um 100 Xj Prozent unter die jeweiligen Durchschnittswerte im Zeitraum der Überschreitung gesenkt werden.

(c) Sj > 20. In diesem Fall beträgt der für die Messstelle j zu erreichende Durchschnittswert für 2013, 2014 und 2015 20 μg/m³ und die Berechnung wird für die nächste Messstelle (j+1) nochmals durchgeführt.

11.1.2 Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation

Verordnung BGBI. II Nr. 298/2001

Luftschadstoff	Grenzwerte	Zielwerte
Schwefeldioxid	20 μg/m³ als JMW und für das Winter- halbjahr	50 μg/m³ als TMW
Stickoxide (NO+NO ₂ als NO ₂)	30 μg/m³ als JMW	
Stickstoffdioxid		80 μg/m³ als TMW

IG-L-Messkonzeptverordnung 2012 – IG-L-MKV 2012, Anlage 2 Standortkriterien, II. Großräumige Standortkriterien, b) Schutz von Ökosystemen und der Vegetation:

Die Probenahmestellen, an denen Messungen zum Schutz von Ökosystemen und der Vegetation vorgenommen werden, sollen so gelegt werden, dass sie nicht im unmittelbaren Einflussbereich von NOx- bzw. SO₂-Emittenten liegen. In Ballungsräumen sind keine Messungen vorzunehmen. Die Luftqualität soll für einen Bereich von einigen zehn Quadratkilometern repräsentativ sein.

11.1.3 Grenzwerte des Ozongesetzes

(Ozongesetz BGBI. Nr. 210/1992 idgF)

Ozon-Warnwerte - Anlage 1 zu § 6

§ 6: Zum Schutz der menschlichen Gesundheit vor akuten hohen Ozonbelastungen werden in der Anlage 1 die Werte für die Immissionskonzentration von Ozon für die Informationsschwelle und die Alarmschwelle festgelegt.

Informationsschwelle und Alarmschwelle für Ozon			
Informationsschwelle	1-Stundenmittelwert (stündlich gleitend)	180 μg/m³	
Alarmschwelle	1-Stundenmittelwert (stündlich gleitend)	240 μg/m³	

Bei den Konzentrationsangaben in µg/m³ ist das Volumen auf eine Temperatur von 293 K und einen Druck von 101,3 kPa zu normieren.

Anmerkung: Die Informationsschwelle ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition ein Risiko für die menschliche Gesundheit für besonders empfindliche Bevölkerungsgruppen besteht. Die Alarmschwelle ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition ein Risiko für die menschliche Gesundheit für die Gesamtbevölkerung besteht.

Zielwerte und langfristige Ziele für die Immissionskonzentration von Ozon - Anlage 2 und Anlage 3 zu § 10a

§ 10a. Zum Schutz der menschlichen Gesundheit und zum Schutz der Vegetation gelten im gesamten Bundesgebiet die Zielwerte gemäß Anlage 2 und die langfristigen Ziele gemäß Anlage 3.

Zielwerte für Ozon ab dem Jahr 2010				
Zielwert für den Schutz der menschli- chen Gesundheit	Höchster 8-Stunden-Mittelwert eines Tages	120 μg/m³; darf im Mittel über 3 Jahre an höchstens 25 Tagen pro Kalender- jahr überschritten werden		
Zielwert zum Schutz der Vegetation	AOT40, berechnet aus 1-Stundenmittelwerten von Mai bis Juli	18 000 μg/m³.h gemittelt über 5 Jahre		

Langfristige Ziele für Ozon für das Jahr 2020				
Langfristiges Ziel für den Schutz der menschlichen Gesundheit		120 μg/m³		
Langfristiges Ziel für den Schutz der Vegetation	AOT40, berechnet aus 1-Stundenmittelwerten von Mai bis Juli	6 000 μg/m³.h		

Bei den Konzentrationsangaben in μ g/m³ ist das Volumen auf eine Temperatur von 293 K und einen Druck von 101,3 kPa zu normieren. Der Achtstundenmittelwert ist gleitend aus Einstundenmittelwerten zu berechnen; jeder Achtstundenmittelwert gilt für den Tag, an dem der Mittelungszeitraum endet. AOT40 bedeutet die Summe der Differenzen zwischen den Konzentrationen über 80 μ g/m³ als Einstundenmittelwerte und 80 μ g/m³ unter ausschließlicher Verwendung der Einstundenmittelwerte zwischen 8 und 20 Uhr MEZ.

11.1.4 SO₂-Grenzwerte der zweiten Verordnung gegen forstschädliche Luftverunreinigungen

BGBI, Nr. 199/1984

Grenzwert April bis Oktober	Grenzwert November bis März	Statistische Definition
0,07 mg/m³	0,15	97,5 – Perzentilwert der HMWs eines Monats
0,14 mg/m³	0,30	Halbstundenmittelwert*
0,05 mg/m³	0,10	Tagesmittelwert

^{*} Der Grenzwert für den Halbstundenmittelwert ergibt sich aus folgender Formulierung: Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100 Prozent des Grenzwertes betragen (§4.(1) lit. a)

11.1.5 Bewertungsgrößen der Kurorterichtlinie der ÖAW

Aus der Richtlinie zur Erfassung und Bewertung der Luftqualität in Kurorten der Kommission für Klima und Luftqualität der österreichischen Akademie der Wissenschaften (Dezember 2013). Durch die empfohlenen Richtwerte soll sichergestellt werden, dass der Kurerfolg nicht durch gesundheitsschädliche Einwirkungen von Luftschadstoffen in Kurzonen beeinträchtigt wird. Basis dieses Entwurfs sind die WHO-Guidelines (siehe Abschnitt 11.3). Diese sollten beim Erstansuchen um das Prädikat "Luftkurort" oder "Heilklimatischer Kurort" eingehalten werden.

	JMW	TMW	MW8	MW1	Überschreitungen
PM _{2,5}	15 μg/m³	25 μg/m³			Max. 20 Tage/Jah
PM ₁₀	20 μg/m³	50 μg/m³			Max. 10 Tage/Jah
NO ₂	30 μg/m³	80 μg/m³			
O ₃			160 μg/m³		
Geruch				1 GE/m³	4 Prozent der Jahre stunden
ertungsgröß	en für die Überprüfu	ng der Kurzone vo	n bereits anerkannte	en Bäderkurorten	
			MANAGO	B 4) 0 / 4	Cu i si
	JMW	TMW	MW8	MW1	Uberschreitunger
PM _{2,5}	JMW 15 µg/m³	TMW 30 µg/m³	IVIVV8	IVIVV I	<u> </u>
PM _{2,5}			MIVV8	IVIVV I	Max. 25 Tage/Jah
	15 μg/m³	30 μg/m³	MIVV8	IVIVVI	Max. 25 Tage/Jah
PM ₁₀	15 μg/m³ 25 μg/m³	30 μg/m³ 50 μg/m³	160 µg/m³	IVIVVI	Überschreitunger Max. 25 Tage/Jah Max. 25 Tage/Jah Max. an 3 Tagen

Darüber hinaus sind auch für bestehende Kurzonen die Werte der WHO für CO und SO₂ sowie die des IG-L jedenfalls einzuhalten. Gibt es in Kurorten Hinweise auf relevante Grobstaubquellen, so sind diese in die Beurteilung einzubeziehen und auf einen Wert von 165 mg/(m²d) zu begrenzen.

11.2 Europäische Immissionsgrenzwerte

11.2.1 Immissionsgrenzwerte der EU-Luftqualitätsrichtlinie

Anhang VII, XI, XII, XIII und Anhang XIV der Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa

Grenzwerte für Schwefeldioxid

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu er- reichen ist
1-Stundengrenzwert zum Schutz der menschlichen Gesund- heit	Stunde	350 µg/m³ dürfen nicht öfter als 24-mal im Ka- lenderjahr überschrit- ten werden	150 μg/m³ (43 %)	1.1.2005
1-Tages-Grenzwert zum Schutz der menschlichen Gesund- heit	Tag	125 µg/m³ dürfen nicht öfter als dreimal im Ka- lenderjahr überschrit- ten werden	keine	1.1.2005
Kritische Werte für den Schutz der Vegetation	Kalenderjahr und Winter (1.10. bis 31.3.)	20 μg/m³	keine	19. Juli 2001

Alarmschwelle für Schwefeldioxid: 500 µg/m³ - Die Werte sind drei aufeinander folgende Stunden lang an Orten zu messen, die für die Luftqualität in einem Bereich von mindestens 100 km² oder im gesamten Gebiet oder Ballungsraum, je nachdem welche Fläche kleiner ist, repräsentativ sind.

Grenzwerte für Stickstoffdioxid und Stickstoffoxide

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu er- reichen ist
1-Stundengrenzwert zum Schutz der menschlichen Gesund- heit	Stunde	200 µg/m³ NO₂ dürfen nicht öfter als 18-mal im Kalenderjahr über- schritten werden	50 % am 19. Juli 1999, Reduzierung am 1. Januar 2001 und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0 % am 1. Januar 2010	1.1.2010
Jahresgrenzwert zum Schutz der menschli- chen Gesundheit	Kalenderjahr	40 μg/m³ NO₂	50 % am 19. Juli 1999, Reduzierung am 1. Januar 2001 und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0 % am 1. Januar 2010	1.1.2010
Kritische Werte für den Schutz der Vegetation	Kalenderjahr	30 μg/m³ NOx (NO + NO ₂ als NO ₂ berechnet)	keine	19. Juli 2001

Alarmschwelle für Stickstoffdioxid: 400 µg/m³, Die Werte sind drei aufeinander folgende Stunden lang an Orten zu messen, die für die Luftqualität in einem Bereich von mindestens 100 km² oder im gesamten Gebiet oder Ballungsraum, je nachdem welche Fläche kleiner ist, repräsentativ sind.

Grenzwerte für PM₁₀

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu errei- chen ist
24-Stundengrenzwert zum Schutz der menschlichen Gesund- heit	Tag	50 μg/m³ PM₁₀ dürfen nicht öfter als 35-mal im Kalenderjahr über- schritten werden	50 %	1.1.2005
Jahresgrenzwert für den Schutz der menschlichen Gesund- heit	Kalenderjahr	40 μg/m³ PM ₁₀	20 %	1.1.2005

Grenzwerte für Blei im PM₁₀

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu errei- chen ist
Jahresgrenzwert zum Schutz der menschli- chen Gesundheit		0,5 μg/m³	100 %	1.1.2005, in unmittel- barer Nähe bestimmter Quellen 1.1.2010

Grenzwerte für Benzol

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu errei- chen ist
Grenzwert zum Schutz der menschlichen Ge- sundheit	Kalenderjahr	5 μg/m³	5 μg/m³ (100 %) am 13. Dezember 2000, Reduzierung am 1. Januar 2006 und danach alle 12 Monate um 1 μg/m³ bis auf 0 % am 1. Januar 2010	1.1.2010

Grenzwerte für Kohlenmonoxid

	Mittelungs- zeitraum	Grenzwert	Toleranzmarge	Zeitpunkt, zu dem der Grenzwert zu errei- chen ist
Grenzwert zum Schutz der menschlichen Ge- sundheit	Höchster 8- Stunden-Mit- telwert pro Tag	10 mg/m³	60 %	1.1.2005

Nationales Ziel für die Reduzierung der Exposition, Zielwert und Grenzwert für PM_{2,5}

A. Indikator für die durchschnittliche Exposition

Der Indikator für die durchschnittliche Exposition (AEI — Average Exposure Indicator) wird in µg/m³ ausgedrückt und anhand von Messungen an Messstationen für den städtischen Hintergrund in Gebieten und Ballungsräumen des gesamten Hoheitsgebiets eines Mitgliedstaats ermittelt. Er sollte als gleitender Jahresmittelwert der Konzentration für drei Kalenderjahre berechnet werden, indem der Durchschnittswert aller gemäß Anhang V Abschnitt B eingerichteten Probenahmestellen ermittelt wird. Der AEI für das Referenzjahr 2010 ist der Mittelwert der Jahre 2008, 2009 und 2010.

Die Mitgliedstaaten können jedoch, falls für 2008 keine Werte verfügbar sind, den Mittelwert der Jahre 2009 und 2010 oder den Mittelwert der Jahre 2009, 2010 und 2011 verwenden. Mitgliedstaaten, die von dieser Möglichkeit Gebrauch machen, teilen der Kommission ihren Beschluss bis spätestens zum 11. September 2008 mit.

Der AEI für das Jahr 2020 ist der gleitende Jahresmittelwert (Durchschnittswert aller dieser Probenahmestellen) für die Jahre 2018, 2019 und 2020. Anhand des AEI wird überprüft, ob das nationale Ziel für die Reduzierung der Exposition erreicht wurde.

Der AEI für das Jahr 2015 ist der gleitende Jahresmittelwert (Durchschnittswert aller dieser Probenahmestellen) für die Jahre 2013, 2014 und 2015. Anhand des AEI wird überprüft, ob die Verpflichtung in Bezug auf die Expositionskonzentration erfüllt wurde.

B. Nationales Ziel für die Reduzierung der Exposition

Ziel für die Reduzierung	Jahr, in dem das Ziel für die Reduzierung der Exposition erreicht werden sollte	
Ausgangskonzentration in μg/m3	2020	
< 8,5 = 8,5	0 %	
> 8,5 — < 13		
= 13 < 18	15 %	
= 18 — < 22		
≤ 22	Alle angemessenen Maßnahmen, um das Ziel von 18 μg/m³ zu erreichen	

Ergibt sich als Indikator für die durchschnittliche Exposition ausgedrückt in $\mu g/m^3$ im Referenzjahr 8,5 $\mu g/m^3$ oder weniger, ist das Ziel für die Reduzierung der Exposition mit Null anzusetzen. Es ist auch in den Fällen mit Null anzusetzen, in denen der Indikator für die durchschnittliche Exposition zu einem beliebigen Zeitpunkt zwischen 2010 und 2020 einen Wert von 8,5 $\mu g/m^3$ erreicht und auf diesem Wert oder darunter gehalten wird.

C. Verpflichtung in Bezug auf die Expositionskonzentration

Verpflichtung in Bezug auf die Expositionskonzentration	Jahr, in dem die Verpflichtung zu erfüllen ist
20 μg/m³	2015

D. Zielwert

Mittelungszeitraum	Zielwert	Zeitpunkt, zu dem der Zielwert erreicht werden sollte
Kalenderjahr	25 μg/m³	1. Januar 2010

E. Grenzwert

Mitteilungs- zeitraum	Grenz- wert	Toleranzmarge	Frist für die Einhal- tung des Grenzwerts	
STUFE 1				
Kalenderjahr	25 μg/m³	20 % am 11. Juni 2008, Reduzierung am folgenden 1. Januar und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0 % am 1. Januar 2015	1. Januar 2015	
STUFE 2 <u>(¹)</u>				
Kalenderjahr	20 μg/m ³		1. Januar 2020	
(¹) Stufe 2: Richtgrenzwert, der von der Kommission im Jahr 2013 anhand zusätzlicher Informationen über die Auswirkungen auf Ge-				

(¹) Stufe 2: Richtgrenzwert, der von der Kommission im Jahr 2013 anhand zusätzlicher Informationen über die Auswirkungen auf Ge sundheit und Umwelt, die technische Durchführbarkeit und die Erfahrungen mit dem Zielwert in den Mitgliedstaaten zu überprüfen ist.

Zielwerte und Langfristziele für Ozon

Zielwerte	Parameter	Zielwert für 2010 (1)
Zielwert zum Schutz der menschli- chen Gesundheit	Höchster 8-Stunden-Mittelwert pro Tag ⁽²⁾	120 µg/m³ dürfen an höchstens 25 Ta- gen im Kalenderjahr überschritten wer- den, gemittelt über 3 Jahre
Zielwert zum Schutz der Vegetation	AOT40 (berechnet anhand von 1-Stunden-Mittelwerten) von Mai bis Juli	18 000 μg/m³.h gemittelt über 5 Jahre ⁽³⁾
Langfristige Ziele für Ozon (Richtlinie 2	2002/3/EG und 2008/50/EG)	
	Parameter	Langfristiges Ziel (e)
		Langinstiges Ziei (e)
Langfristiges Ziel zum Schutz der menschlichen Gesundheit	Höchster 8-Stunden-Mittelwert pro Tag innerhalb eines Kalenderjahres	120 μg/m³
	Höchster 8-Stunden-Mittelwert pro Tag	0 0 ()

- (1) Die Einhaltung der Zielwerte wird zu diesem Termin beurteilt. Dies bedeutet, dass das Jahr 2010 das erste Jahr sein wird, das zur Berechnung der Einhaltung im betreffenden Drei- bzw. Fünfjahreszeitraum herangezogen wird.
- (2) Der höchste 8-Stunden-Mittelwert der Konzentration eines Tages wird ermittelt, indem die gleitenden 8-Stunden-Mittelwerte untersucht werden, welche aus 1-Stunden-Mittelwerten berechnet und stündlich aktualisiert werden. Jeder auf diese Weise errechnete 8-Stunden-Mittelwert gilt für den Tag, an dem dieser Zeitraum endet, d. h. der erste Berechnungszeitraum für jeden einzelnen Tag umfasst die Zeitspanne von 17.00 Uhr des vorangegangenen Tages bis 1.00 Uhr des betreffenden Tages, während für den letzten Berechnungszeitraum jeweils die Stunden von 16.00 Uhr bis 24.00 Uhr des betreffenden Tages zugrunde gelegt werden.
- (3) Können die drei- bzw. fünfjährigen Durchschnittswerte nicht anhand vollständiger und aufeinander folgender Jahresdaten ermittelt werden, sind mindestens die folgenden jährlichen Daten zur Überprüfung der Einhaltung der Zielwerte vorgeschrieben
 - Zielwert zum Schutz der menschlichen Gesundheit: gültige Daten für ein Jahr,
 - Zielwert zum Schutz der Vegetation: gültige Daten für drei Jahre.

Schwellenwerte für Ozon

Informationsschwelle	1-Stundenmittelwert	180 μg/m³
Alarmwert	1-Stundenmittelwert (1)	240 μg/m³

(1) Im Zusammenhang mit der Durchführung von Artikel 24 muss die Überschreitung des Schwellenwerts drei aufeinander folgende Stunden lang gemessen bzw. vorhergesagt werden.

11.2.2 Beurteilungsschwellen

(Anhang II der Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa und

Anhang II der Richtlinie 2004/107/EG des Europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft)

Aus der durch Vorerkundungsmessungen ermittelten Lage des Immissionsniveaus eines Untersuchungsgebiets im Vergleich zu den Beurteilungsschwellen ergibt sich, wie viele Messstationen mindestens betrieben werden müssen oder ob (bei Unterschreitung der unteren Beurteilungsschwelle) stattdessen Modellrechnungen oder Schätzungen ausreichen.

	Obere Beurteilungsschwelle	Untere Beurteilungsschwelle	
SO ₂ (Gesundheitsschutz)	75 μg/m³ als TMW max. 3x/Jahr	50 μg/m³ als TMW max. 3x/Jahr	
SO ₂ (Vegetationsschutz)	12 μg/m³ als Wintermittelwert	8 μg/m³ als Wintermittelwert	
NO ₂ (Gesundheitsschutz)	140 μg/m³ als MW1 max. 18x/Jahr	100 μg/m³ als MW1 max. 18x/Jahr	
	32 μg/m³ als JMW	26 μg/m³ als JMW	
NOx (Vegetationsschutz)	24 μg/m³ als JMW (NOx als NO₂)	19,5 μg/m³ als JMW (NOx als NO₂)	
Partikel (PM ₁₀)	35 μg/m³ als TMW max. 35x/Jahr	25 μg/m³ als TMW max. 35x/Jahr	
	28 μg/m³ als JMW	20 μg/m³ als JMW	
Blei	0,35 μg/m³ als JMW	0,25 μg/m³ als JMW	
Benzol	3,5 μg/m³ als JMW	2 μg/m³ als JMW	
Kohlenmonoxid	7 mg/m³ als MW8	5 mg/m³ als MW8	
Arsen	3,6 ng/m³ als JMW	2,4 ng/m³ als JMW	
Kadmium	3 ng/m³ als JMW	2 ng/m³ als JMW	
Nickel	14 ng/m³ als JMW	10 ng/m³ als JMW	
Benzo(a)pyren	0,6 ng/m³ als JMW	0,4 ng/m³ als JMW	

11.2.3 Zielwerte für Arsen, Kadmium, Nickel und Benzo[a]pyren

Anhang I der Richtlinie 2004/107/EG des Europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft)

Schadstoff	Zielwert (Gesamtgehalt in der PM ₁₀ -Fraktion als Durchschnitt eines Kalenderjahres)
Arsen	6 ng/m³
Kadmium	5 ng/m³
Nickel	20 ng/m³
Benzo(a)pyren	1 ng/m³

Diese Richtlinie wurde mit dem Umweltrechtsanpassungsgesetz BGBl. I Nr. 34/2006 vom 16. März 2006 in österreichisches Recht umgesetzt.

Die Zielwerte der Richtlinie mussten bis 31. Dezember 2012 erreicht werden.

Die Richtlinie schreibt außerdem die Messung von gasförmigem Quecksilber an mindestens einer Messstelle in Österreich vor (derzeit Illmitz), ohne Zielwerte vorzugeben.

11.3 Luftqualitäts-Leitlinienwerte der WHO

Die "Luftgüterichtlinien für Europa" (Air quality Guidelines, AQG) wurden zum ersten Mal 1987 ausgearbeitet. 2000 erschien eine aktualisierte zweite Ausgabe. 2005 veröffentlichte die WHO für ausgewählte Schadstoffe neue Richtwerte. Für die übrigen Schadstoffe sowie für die Ökotoxizität galten nach wie vor die "Air quality guidelines for Europe, 2nd Edition".

Neue Studien veranlassten die WHO im September 2021 erneut aktualisierte Richtwerte zu veröffentlichen, die teilweise deutlich unter den Richtwerten aus dem Jahr 2005 liegen.

Die Richtwerte der Weltgesundheitsorganisation sind nicht als Grenzwerte gedacht, sondern sollen den Staaten Anhaltspunkte für die Festlegung von Grenzwerten sowie für Planungsmaßnahmen und Risikoabschätzungen bieten. Die WHO-Guidelines dienen in der Regel als Ausgangsbasis für die Entwicklung von EU-Grenzwerten.

In der global gültigen Aktualisierung 2021 werden für die Schadstoffe Feinstaub, Ozon, Stickstoffdioxid, Schwefeldioxid und Kohlenmonoxid zusätzlich zu den Richtwerten Zwischenziele für Gebiete mit hoher Luftverschmutzung angegeben.

WHO-Luftgüterichtlinie für Feinstaub, Ozon, Stickstoffdioxid, Schwefeldioxid und Kohlenmonoxid, Aktualisierung 2021

Schadstoff [µg/m³]	Mittelungszeit		Zwischenziele			AQG Richtwert	Zum Vergleich AQG Richtwert
	witterangszen	1	2 3	4	2021	2005	
PM _{2,5}	Jahr	35	25	15	10	5	10
[µg/m³]	24 h ^a	75	50	37,5	25	15	25
PM ₁₀	Jahr	70	50	30	20	15	20
[µg/m³]	24 h ^a	150	100	75	50	45	50
O ₃	Warme Jahreszeit ^b	100	70	-	-	60	-
[µg/m³]	8 hª	160	120	-	-	100	100
NO ₂	Jahr	40	30	20	-	10	40
[µg/m³]	24 h ^a	120	50	-	1	25	•
SO ₂ [µg/m³]	24 h ^a	125	50	-	-	40	20
CO [mg/m³]	24 h ^a	7	-	-	-	4	-

a) Die 24 h Richtwerte und der 8 h Richtwert für Ozon sind als 99 Perzentil angegeben. Das heißt 3-4 Überschreitungstage pro Jahr sind erlaubt.

b) Der AQG-Richtwert 2021 für O_3 in der warmen Jahreszeit ist der Durchschnitt des maximalen 8-Stunden-Mittelwerts der O_3 -Konzentration in den sechs aufeinanderfolgenden Monaten mit der höchsten O_3 -Konzentration im Sechsmonatsdurchschnitt.

12. Übersicht über bisher erschienene Luftmessberichte

12.1 Periodische Berichte

(siehe unter www.land-oberoesterreich.gv.at > Themen > Umwelt und Natur > Luft > Luftgüteberichte und Messprogramme)

Automatisches Luftmessnetz Oberösterreich, Monatsberichte (erschienen ab 1981, jeweils Mitte des Folgemonats, ab 2001 elektronisch verfügbar)

Automatisches Luftmessnetz Oberösterreich, Jahresberichte ab 1986 (ab 2000 im Internet)

Nasser und trockener Niederschlag: Saurer Regen und Inhaltsstoffe in Nass- und Trockendeposition in Oberösterreich (Messungen ab 1984 bis 2000 im Internet)

Staubniederschlag und Schwermetalle in Oberösterreich (erscheint jährlich im Internet)

BTEX-Messungen mit Passivsammlern (wird laufend im Internet publiziert)

12.2 Abgeschlossene Luftgüte-Messprogramme

(siehe auch Homepage > Themen > Umwelt > Luft > Luftgüteberichte und Messprogramme > Weitere Luftgütemessungen)

S401 Linz-Hauserhof Endbericht 2/77 - 12/2000 S173 Steyregg-Au (5/06 - 12/07 S403 Linz-Urfahr Endbericht 2777 - 6/06 S174 Krenglbach (12/06 - 12/07) S405 Asten Endbericht 2/77 - 3/03 S175 Lambach (12/06 - 12/07) S408 Perg Endbericht 7/78 - 7/97 S176 Haid-Napoleonsiedlung (12/06 - 12/08) S410 Braunau Endbericht 07/78 - 09/99 S178 Frankenmarkt (12/07 - 1/09, 6/12 - 3/14, 10/19 - 5/20) S411 Chemie-Enns Endbericht 01/78 - 08/91 S177/S179 Steyr-Tabor (01/08 - 02/09 S413 Linz-Ursulinenhof Endbericht 7/79-10/97 S180 Ranshofen II (2/08 - 2/09) S414 Linz-ORF-Zentrum Endbericht 7/79 - 12/07 S181 Aschach (02/08 - 07/08) S182, S185, S186 Traunkirchen (06/08 - 01/09) S419 Wurzeralm Endbericht 01/85 - 07/89 S422 Steyregg-Stadt Endbericht 2/77-6/84 S183 Puchenau III (07/08 - 12/08) S420 Schöneben Endbericht 1/84 - 9/12 S188, S189 Grünburg (1/09 – 8/09) S190 Ried (2/09 - 10/09, 11/19 - 11/20) S108 Grünbach 01/86 - 03/87 S191-193 Regau (03/09 - 07/09) S109 Hochburg 07/86 - 10/87 S195 Rohrbach II (09/09 - 05/10) S110 Aschach/D. 09/86 - 10/86 S196 Überackern (07/09 - 04/10) S111 Enns - Hallenbad 11/86 - 01/87 S197-S198 Steyregg Plesching-Windegg (10/09 - 12/10) S112 Gallneukirchen 04/87 - 06/87 S199/S201 Ternberg (10/09-5/11) S113 Wolfsegg / H. 06/87 - 03/89 S203/S204 Meggenhofen (6/10-11/11) S114 Puchenau 08/87 - 06/88 S208 Linz-Paracelsusstraße (1/11-1/12) S115 Steyregg - Hasenberg 11/87 - 03/89 S210 Linz-Biesenfeld (6/11 - 7/12) S116 Leonding 12/87 - 03/89 S212 Ebensee (8/11 – 3/12) S117 Gmunden - Eck 07/88 - 07/89, 08/97 - 1/99 S213 Engerwitzdorf (10/11 - 4/12) S120/S122 Laakirchen-Steyrermühl 04/89 - 05/90 S218 Ottensheim (2/12 – 7/12) S121 Mattighofen 04/89 - 09/93 S220 Gallneukirchen (4/12-10/13) S124 Neumarkt/Hausruck 05/90 - 12/91 S223 Spital/Pyhrn (10/12-1/14) S126 Ampflwang 04/91 - 11/91 S224 Aschach (11/12-1/14 S127 Prachatice 07/91 - 7/95 S228 Gosau (10/13 - 4/15) S129 Ranshofen 09/92 - 09/93 S231 St. Florian am Inn (6/14-3/15) S130 Linz-Bindermichl 10/92 - 06/94 S206 Asten 4 (9/10 - 5/16) S132 Burgkirchen 05/93 - 07/94 S236 Linz-Ebelsberg (6/15 - 7/16) S133 Schleißheim 11/93 - 05/94 S239 Steyr-Tabor (12/15 - 1/17) S135/S410/S136 Ried/Innkreis-Braunau- Gföll-Waizenkirchen S242 Eferding (06/16 – 06/17) 08/94 - 9/95S243 Marchtrenk (08/16 - 08/17) S137 Kirchdorf/Krems 11/94 - 11/95 + 05/98 - 10/98 S245 Lenzing 2 (3/17 – 4/18) S405/S139/S142 Asten I, II, III 11/95 - 06/96 S248 Schwand (10/17 - 4/18) S141 Linz-Margarethen 02/96 -03/97 S405 Asten (7/17 – 7/18) S147 Micheldorf 12/96 - 12/97 S180 Ranshofen (8/17 - 10/18) S147 Micheldorf 2 10/10 - 6/11 S244 Haid II (01/17 - 02/19) S148/149/150 Traunkirchen 06/97 - 06/98 S251 Plesching II (4/18 – 5/19) S152 Oberrothenbuch 09/98 - 06/99 S252 Steyr-Tomitzstraße (7/18 – 6/19) S153 Linz-Glögglweg 02/99 - 06/99 S259 S260 Steyrermühl (6/19 - 10/19) S154 Puchenau 3/99 - 4/2000 S254 Hallstatt (10/18 - 11/19) S155 Mauthausen-Hochfeld 9/99 - 4/2000 S256 Bad Hall (3/19 - 5/20)

S257 Engelhartszell (5/19 - 5/20)

S263 Kremsmünster 2 (5/20 - 5/21)

S262 Eferding 2 (5/20 – 4/21)

S265 Vöcklamarkt (5/20 - 6/21)

S158 Oberweis 9/2000-4/2001

S166 Weibern (5/03 - 10/05)

S160 St.Peter am Hart 9/01-8/02

S169 Haid/Ansfelden (12/04-8/05)

S171 Enns-Eckmayrmühle B309 (8/05 - 5/08)

12.3 Abgeschlossene Meteorologie-Messprogramme

S123 Bachmanning 10/98-4/91

S131 Linz-Tankhafen 10/92-6/96

S134 Perg-Weinzierl 05/94 – 5/95

S138 Hinzenbach 06/95 - 10/95

S140 Neumarkt / Mühlkreis 01/96 - 11/96

S143 Losenstein 10/96 - 07/97

S144/S145/S146 Grünburg 10/96 - 09/97

S157 Grein-Straßenmeisterei 4/2000 - 10/2000

S159 Kronstorf 6/01-8/02

S167 Unterweitersdorf 02/04 - 04/05

S168 Neumarkt/Götschka 02/04 - 04/05

S194 Seewalchen/Kraims 08(09-12/09

S200 Alkoven/Winkeln 02/10-05/10

S205 Krenglbach 08/10-08/11

S207 Pinsdorf/Wiesen 12/10-01/12

S214 Wartberg/Strienzing 10/11-11/12

S216 Riedegg-Alberndorf 11711-5/12

S221 Veitsdorf-Alberndorf 5/12-5/13

S222 Met. Kremsmünster 10/12-3/13

S225 Met. Pettenbach 3713-3/14

S229_Met.Thalheim

S230_Met.Bachmanning

S233 Met. Vorchdorf (11/14 - 12/15)

S234 Met. Sirfling (1./15-4/15)

S238 Met. Trimmelkam (10/15 - 11/16)

S240 Met. Klendorf (2/16 - 6/16)

3240 Met. Rieffdoff (2/10 – 6/10)

S241 Met. Walchen (2/16-3/17)

S242 Met. Eferding (6/16 – 7/17)

S246 Met. Meggenhofen (7/17-7/18)

S247 Met. Ratzling (9/17–4/18)

S250 Met. Vordersteining (4/18–10/18)

S253 Met. Pössing (9/18 – 9/19)

S255 Met. Laakirchen (5/19 - 7/20)

S264 Met. Klanigen (5/20 - 4/21)

S267 Met. Sinnersdorf (4/21 - 10/21)

12.4 Sonstige Veröffentlichungen

Statuserhebungen

(siehe unter <u>www.land-oberoesterreich.gv.at</u> > Themen > Umwelt und Natur > Luft > Maßnahmen und Statuserhebungen > Statuserhebungen)

- Statuserhebung über Grenzwertüberschreitungen von Feinstaub und Gesamt-Staub in Linz und Steyregg 2002 (2003)
- Statuserhebung über Grenzwertüberschreitungen von Feinstaub in Wels, Steyr und Enns-Kristein im Jahr 2003 (2005)
- Aktualisierung der Statuserhebung für PM₁₀– ergänzende Daten für die Jahre 2004 bis 2009 (2010)
- Aktualisierung der Statuserhebung für PM₁₀ in Oberösterreich ergänzende Daten für die Jahre 2010 und 2011
- Statuserhebung über Grenzwertüberschreitungen von Stickstoffdioxid an der A1 im Jahr 2003 (2005)
- Statuserhebung über Grenzwertüberschreitungen von Stickstoffdioxid an der Station Linz-Römerberg im Jahr 2004 (2006)
- Ergänzung zur Statuserhebung über Stickstoffdioxid an der A1 (2007)
- Aktualisierung der Statuserhebung über Stickstoffdioxid in Linz (2010)

Maßnahmenprogramme

(siehe unter <u>www.land-oberoesterreich.gv.at</u> > Themen > Umwelt > Luft > Maßnahmen und Statuserhebungen > Maßnahmenprogramme und -verordnungen)

- Programm nach § 9a Abs. 6 IG-L zur Verringerung der Belastung von Stickstoffdioxid in Linz 2019 (aufbauend auf dem Programm des Jahres 2011)
- Programm nach § 9a IG-L zur Verringerung der Belastung mit den Schadstoffen Feinstaub und Stickstoffdioxid für den oberösterreichischen Zentralraum, insbesondere die Städte Linz und Wels (2011)
- Programm nach § 9a IG-L für die vorsorgliche Verringerung von Luftschadstoffen an der A1 (2007)
- Feinstaub-Maßnahmenpaket des Landes Oberösterreich 2005

Sonstige Dokumentationen

(siehe unter <u>www.land-oberoesterreich.gv.at</u> > Themen > Umwelt > Luft > Luftgüteberichte und Messprogramme > Dokumentation von Trends bei Feinstaub und Stickstoffdioxid)

- Dokumentation der Entwicklung der Luftgüte für NO_2 in Linz 2011 2014
- Dokumentation der Entwicklung der Luftgüte für NO₂ an der A1 2011 2014
- Evaluierungsbericht PM₁₀ 2012 2014

(siehe unter www.land-oberoesterreich.gv.at > Themen > Umwelt > Luft > Luftschadstoffe, Emissionen

- Modellberechnungen der Emissionen bzw. Immissionen der Schifffahrt 2019

13. Anhang

13.1 Vergleich mit der Situation in Österreich

Da die Jahresberichte der anderen Bundesländer und des Umweltbundesamts parallel mit diesem Bericht erstellt werden, müssen die folgenden Angaben als vorläufig gelten.

 PM_{10} : Die Feinstaubbelastung des Jahres 2021 zeigt österreichweit keine Überschreitung des EU Grenzwertes von maximal 35 Überschreitungstagen (TMW > 50 µg/m³), jedoch zwei Überschreitungen des Grenzwertes nach dem IG-L mit 25 Überschreitungstagen. PM_{10} wurde im Jahr 2021 an 121 Stellen in Österreich gemessen.

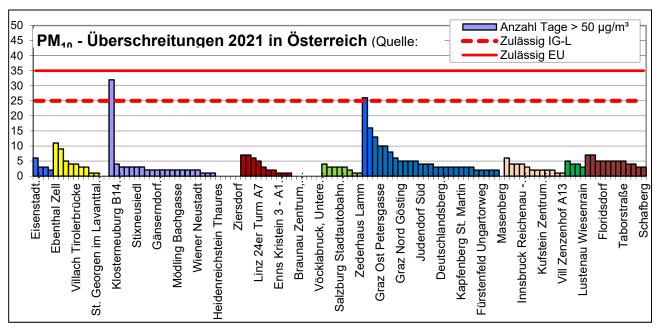


Abbildung 51: PM₁₀-TMW - Überschreitungszahlen aller Messstellen in Österreich (vorläufige Werte)

NO₂: Die NO₂ Belastung war im Jahr 2021 ähnlich hoch wie im Jahr 2020, die vorwiegend aufgrund des Rückgangs des Verkehrs in der Corona Pandemie deutlich niedriger als in den Jahren 2018 und 2019 war.

Es wurde an 141 Messstellen in Österreich gemessen. Der EU-Grenzwert von 40 μ g/m³ wurde an allen Messstellen unterschritten. Der IG-L Grenzwert von 30 μ g/m³ zuzüglich der Toleranzmarge von 5 μ g/m³, also 35 μ g/m³ wurde ebenso an allen Messstellen unterschritten. Der Wert von 30 μ g/m wurde an sieben Messstellen in den Bundesländern Oberösterreich, Salzburg, Graz, Tirol und Wien knapp überschritten. Der HMW-Grenzwert von 200 μ g/m³ wurde an allen Messstellen unterschritten.

Ozon wurde an 105 Messstellen in Österreich gemessen. An 2 Messstellen wurde die Informationsschwelle einmal überschritten. Die Warnschwelle wurde nicht überschritten.