
ÖKOLOGISCHER ZUSTAND DER SEEN IM LAND OBERÖSTERREICH

(Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee)

Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009)

Das Jahr 2023, mit Dreijahresmitteln seit 2021

im Auftrag der Oberösterreichischen Landesregierung (Sachbearbeiter: Dr. Hubert Blatterer)

Dr. Christian D. Jersabek

Arnsdorf, 08. April 2024

Commercial Management Control of the
Cover: Cyclotella ocellata, Obertrumer See, Apr. 2013 © C. D. Jersabek

Inhalt

Τ.	EINTETT UNG	ە
2.	M e t h o d i k	6
	2.1. Probenahmetermine und Frequenz	6
	2.2. Probenahme	7
	2.3. Auswertungen	7
	2.4. Zusammenfassende Bewertungen	8
3.	Ergebnisübersicht	10
	3.1. Übersicht der Phytoplanktonergebnisse 2023	10
	3.1.1. Artenzahlen	13
	3.1.2. Taxonomische Zusammensetzung nach Algenklassen	14
	3.2. Zustands-Vergleich mit den Vorjahren	14
4.	ATTERSEE	19
	4.1. Gutachten Phytoplankton	19
	4.2. Ergebnistabellen	21
	Prüfbericht	29
	Attersee 2023-03-13	29
	Attersee 2023-06-14	34
	Attersee 2023-08-08	38
	Attersee 2023-11-15	43
5.	HALLSTÄTTER SEE	48
	5.1. Gutachten Phytoplankton	48
	5.2. Ergebnistabellen	50
	5.3. Grafische Darstellungen	55
	Prüfbericht	57
	Hallstätter See 2023-03-08	57
	Hallstätter See 2023-06-19	61
	Hallstätter See 2023-08-16	65
	Hallstätter See 2023-11-13	69
6.	I R R S E E	73
	6.1. Gutachten Phytoplankton	73
	6.2. Ergebnistabellen	75
	6.3. Grafische Darstellungen	80

Prüfbericht	82
Irrsee 2023-03-01	82
Irrsee 2023-06-12	86
Irrsee 2023-08-10	90
Irrsee 2023-11-06	94
7. M O N D S E E	98
7.1. Gutachten Phytoplankton	98
7.2. Ergebnistabellen	101
7.3. Grafische Darstellungen	108
Prüfbericht	110
Mondsee 2023-01-16	110
Mondsee 2023-02-15	114
Mondsee 2023-03-06	118
Mondsee 2023-04-03	122
Mondsee 2023-05-10	126
Mondsee 2023-06-05	130
Mondsee 2023-07-03	134
Mondsee 2023-08-01	138
Mondsee 2023-09-11	142
Mondsee 2023-10-02	146
Mondsee 2023-11-08	150
Mondsee 2023-12-04	155
8. TRAUNSEE	160
8.1. Gutachten Phytoplankton	160
8.2. Ergebnistabellen	162
8.3. Grafische Darstellungen	167
Prüfbericht	169
Traunsee 2023-03-21	
	169
Traunsee 2023-06-21	
Traunsee 2023-06-21	173
	173 177

Oberösterreichische Seen 2023 – Phytoplankton (GZÜV)

10. ANHANG	185
10.1. GZÜV - Ergebnisberichte, 2007 – 2022	185
10.2. Saisonales Auftreten der Phytoplankton-Arten in OÖ Seen	187

1. Einleitung

Seit Wiederaufnahme des Seen-Monitorings im Jahr 2007 unterliegen die großen Oberösterreichischen Seen (Tab. 1) einer kontinuierlichen Kontrolle ihres limnologischen Zustandes durch das Amt der Oberösterreichischen Landesregierung. Es handelt sich dabei um die nationale Umsetzung der EU-Wasserrahmenrichtlinie, wobei neben der Erhebung Trophie-relevanter Parameter wie Gehalt an Pflanzennährstoffen, Chlorophyll-a und Sichttiefe, auch die Entwicklung des Algenplanktons durch quantitative Analysen berücksichtigt wird. Seit der Wasserrechtsnovelle 2003 ist das Phytoplankton als "Biologisches Qualitätselement" (BQE) im Rahmen eines ökologischen Monitorings zur Überwachung der größeren Seen zu erfassen. Die Erhebungen gemäß der Gewässerzustandsüberwachungsverordnung (GZÜV) und Verrechnung des Phytoplanktons als BQE nach standardisierter Methode werden seit 2007 durchgeführt.

Tabelle 1. Morphometrische Daten der bearbeiteten Seen (nach Sampl et al., 1989)	

	Seehöhe	Fläche	max.Tiefe	mittl.Tiefe	Volumen	theor. Erneue-	Einzugsgebiet
	(m ü.A.)	(km²)	(m)	(m)	(10 ⁶ m ³)	rungszeit (Jahre)	(km²)
Attersee	469	45,60	170,6	84,2	3944,6	7,0	463,5
Hallstätter See	508	8,58	125,2	64,9	557,0	0,5	646,5
Irrsee	533	3,47	32,0	15,3	53,0	1,7	27,5
Mondsee	481	14,21	68,3	36,0	510,0	1,7	247,0
Traunsee	422	25,60	191,0	89,7	2302,0	1,0	1417,0

Im vorliegenden Bericht werden nun die Ergebnisse der Phytoplanktonuntersuchungen im Land Oberösterreich für das Jahr 2023 zusammengefasst und eine ökologische Zustandsbewertung der Seen anhand des biologischen Qualitätselementes Phytoplankton gemäß GZÜV 2009 durchgeführt. Für Vergleiche der aktuellen Ergebnisse mit der Phytoplanktonentwicklung in den Vorjahren standen die jeweiligen Ergebnisberichte zur Verfügung. Sie sind im Anhang gelistet und auch auf https://www.land-oberoesterreich.gv.at/211482.htm zugängig.

2. Methodik

2.1. Probenahmetermine und Frequenz

Die Untersuchungszeitpunkte wurden mit der Zielsetzung gewählt, dass damit vier limnologisch wichtige Perioden wie folgt erfasst werden: 1) Frühjahrszirkulation (März), 2) Beginn Sommerstagnation (Juni), 3) Höhepunkt Sommerstagnation (August) und 4) Herbstzirkulation (Novem-

ber). Einer intensiveren Beprobung unterlag in den vergangen Jahren und zuletzt auch 2023 der Mondsee, in dem in monatlichen Abständen Proben entnommen wurden.

Aufgrund der geringen Probenahme-Frequenz von nur vier Terminen im Jahr in Attersee, Irrsee, Traunsee und Hallstätter See können eventuelle Ausreißer erheblichen Einfluss auf den Jahresmittelwert haben. Die letztendliche Bewertung des ökologischen Zustandes erfolgt daher auf Basis eines gleitenden Mittelwertes über 3 Jahre.

2.2. Probenahme

Die Probennahmen erfolgten durch Mitarbeiter des Bundesamtes für Wasserwirtschaft (IGF Mondsee, Scharfling) jeweils über dem tiefsten Beckenbereich. Zur Entnahme der über das gesamte Epilimnion integrierenden Mischprobe stand ein summierender Wasserschöpfer nach Schröder in Verwendung. Seewasser- Proben zur Quantifizierung des Phytoplanktons wurden unfiltriert in mit Lugol'scher Lösung versetzte 150-ml Braunglasflaschen abgefüllt. Aus demselben Schöpfer wurden Proben zur Analyse chemisch-physikalischer Parameter und des Chlorophyll-a-Gehalts entnommen. Zusätzlich wurde an jedem Termin die Sichttiefe mit einer weißen Scheibe von 20 cm Durchmesser (Secchi-Scheibe) ermittelt.

Als Epilimnion (bzw. euphotische Zone) wurde für alle Seen pragmatisch die 0 - 21 m-Schicht angenommen, ungeachtet der zwischen den Seentypen bestehenden Transparenz-Unterschiede, sowie saisonal zu erwartender Schwankungen im Lichtklima, bzw. der jeweiligen Schichtungsphase. Die wahre Ausdehnung dieser für die photosynthetische Produktion relevanten Schicht lässt sich näherungsweise durch Annahme der 2,5-fachen Sichttiefe abschätzen.

2.3. Auswertungen

Qualitative Untersuchungen und Artbestimmungen des Phytoplanktons wurden an lugol-und formalin-fixiertem Material vorgenommen. Lebendproben zur Identifizierung/Validierung taxonomisch schwieriger Taxa standen nicht zur Verfügung. Diatomeenpräparate wurden für jeden Termin durch Verglühen der Proben in einem Efco 110-Muffelofen (500°C, 30 min) und anschließendem Einschluss in Naphrax angefertigt.

Die quantitative Analyse des Phytoplanktons erfolgte im Umkehrmikroskop (Telaval 3, Jena) nach Sedimentation von jeweils 100 ml in Röhrenkammern, entsprechend der Methode nach Utermöhl (1958; DIN EN 15204:2006). Zur Ermittlung des Biovolumens einzelner Arten wurden deren Zelldimensionen an geometrische Körper angeglichen (Deisinger, 1984; CEN TC 230/WG 2/TG 3:2007).

Zur Artbestimmung wurde die jeweils aktuelle taxonomische Literatur verwendet. Sofern aufgrund nomenklatorischer Änderungen, taxonomischer Neuzuordnung, Rangänderung oder Synonymisierung einzelne im Bestimmungswerk verwendete, bewertungsrelevante Namen von

jenen im hier zugrunde liegenden Bewertungsschema abwichen, wurde der Name aus letzterem für die Beurteilung beibehalten. Das Taxon würde ansonsten als trophischer Indikator keinen Einfluss auf die Berechnung des Brettum-Index mehr haben. Ungeachtet dessen kann aber in den Artenlisten ein Taxon auch unter dem aktuelleren Namen gelistet sein, sofern dieser als gut begründet erscheint.

Zur vergleichenden Darstellung der Dominanz (Biomassedominanz) quantitativ bedeutsamer Arten werden folgende Kategorien unterschieden: eudominant: > 10% Biovolumsanteil, dominant: 5–10 %, subdominant: 2–5%. Taxa mit geringeren Anteilen (rezedent: 1–2 %, subrezedent <1%) können ausnahmsweise Bewertungsrelevanz erlangen, sofern ihnen ein hohes trophisches Indikationsgewicht zugewiesen wird (Brettum-Index!).

Indikator-Arten für den trophischen Zustand eines Gewässers, die als solche auch mit den entsprechenden Brettum-Scores im Bewertungsschema gelistet sind, werden im Text mit [] wie folgt als solche hervorgehoben: [o] oligotroph, [om] oligo-mesotroph, [m] mesotroph, [me] mesoeutroph, [e] eutroph.

2.4. Zusammenfassende Bewertungen

Die ökologische Zustandsbewertung des Sees (Bundesmessstellen) erfolgt letztendlich über die Beurteilung einer Abweichung vom theoretischen Referenzzustand, berechnet als Ecological Quality Ratio (EQR). Es handelt sich dabei um ein auf der Arbeit von Brettum (1989) basierendes Berechnungsverfahren, standardisiert anhand einer international interkalibrierten Bewertungsmethode für die Parameter Gesamtbiovolumen und Brettum-Index (MS Excel-File, bereitgestellt auf http://wasser.lebensministerium.at/; Wolfram & Dokulil, 2010; Wolfram *et al.*, 2013). Dabei wird primär die Entwicklung des Biovolumens (und seiner EQR = EQR_{BV}), sowie relativer Anteil und trophisches Indikationsgewicht von photoautotrophen Indikatorarten (Brettum-EQR = EQR_{B.l.}) berücksichtigt. Heterotrophe, systematisch aber dem Algenplankton zugerechnete Arten bleiben unberücksichtigt. Entsprechend dem Indikationsgewicht einer Art für einen bestimmten Trophie-Bereich wird anhand der Verteilung taxon-spezifischer Trophie-Scores (Brettum-Scores) der Brettum-Index berechnet. Eine abnehmende EQR_{B.l.} spiegelt zunehmende Nährstoffbelastung wieder. Mit Erweiterung des Verfahrens wurde als weiterer Parameter Chlorophyll-a miteinbezogen, das mit gleicher Gewichtung wie das Biovolumen in die Beurteilung eingeht (Wolfram et al., 2013).

Die Referenzwerte für Biovolumen, Chlorophyll-a und Brettum-Index können je nach IC-Seentyp (AL3 oder AL4) und Lage der Seen innerhalb einer natürlichen Bandbreite des trophischen Grundniveaus schwanken. Hier spielen nicht zuletzt geografische Lage und hydromorphologische Rahmenbedingungen eine wichtige Rolle.

Die Bewertung der Gewässer für das Einzeljahr beruht auf den aus den arithmetischen Mitteln der Parameter Biovolumen, Brettum-Index und Chlorophyll-a berechneten, normierten EQR-

Werten. Die EQR_{Gesamt} berechnet sich aus dem arithmetischen Mittel dieser normierten EQR-Werte.

In den folgenden Tabellen sind für alle zu bewertenden Seen EQR-relevante Referenzwerte und Klassengrenzen gemäß ihrer typologischen und trophischen Zuordnung zusammengefasst (Tab. 2). Die möglichen Zustandsbewertungen als Ergebnis des normierten EQR-Wertes und entsprechende Grenzwerte zeigt Tab. 3.

Tabelle 2: Referenzwerte, Klassengrenzen und EQR-Werte für die Kenngrößen Brettum-Index, Gesamtbiovolumen und Chlorophylla in den Oberösterreichischen GZÜV-Seen (nach Wolfram et al., 2013) – H/G: sehr gut/gut, G/M: gut/mäßig; inklusive Einordnung nach Europäischer (IC) und Österreichischer Seentypologie und Lage der Referenzwerte innerhalb der natürlichen Bandbreite, sowie trophische Zuordnung. – AL3, AL4: Alpine Lake Types; B2: Große Seen des Bayerisch-Österreichischen Alpenvorlandes; D1: Große, tiefe Seen der Nördlichen Kalkalpen (400–600 m ü.A.); D2b: Große flache bis mäßig tiefe Seen der Kalkvoralpen (600–800 m ü.A.), Z_{avg} <15 m; D3: Große Seen der Zentralalpen 600–800 m ü.A.

			Lage		Br	ettum Ind	EQR _{B.I.}		
	ІС-Тур	АТ-Тур	innerhalb Bandbreite	Trophisches Grundniveau	Ref	H/G	G/M	H/G	G/M
Attersee	L-AL3	D1	Mitte	oligotroph	5,19	4,29	3,39	0,827	0,654
Hallstätter	L-AL3	D1	Min	oligotroph	5,29	4,37	3,46	0,827	0,654
Irrsee	L-AL4	B2	Mitte	Oligo-mesotroph	4,07	3,54	3,00	0,87	0,74
Mondsee	L-AL3	D1	Mitte	oligotroph	5,19	4,29	3,39	0,827	0,654
Traunsee	L-AL3	D1	Min	oligotroph	5,29	4,37	3,46	0,827	0,654

			Lage	Trophisches	Gesa	mtbiovo (mm³ l ⁻		EG	R _{BV}
	ІС-Тур	AT-Typ	innerhalb Bandbreite	Grundniveau	Ref	H/G	G/M	H/G	G/M
Attersee	L-AL3	D1	Mitte	oligotroph	0,25	0,42	1,00	0,60	0,25
Hallstätter See	L-AL3	D1	Min	oligotroph	0,20	0,33	0,80	0,60	0,25
Irrsee	L-AL4	B2	Mitte	Oligo-mesotroph	0,60	0,94	2,31	0,64	0,26
Mondsee	L-AL3	D1	Mitte	oligotroph	0,25	0,42	1,00	0,60	0,25
Traunsee	L-AL3	D1	Min	oligotroph	0,20	0,33	0,80	0,60	0,25

			Lage	Trophisches	С	hlorophy (µg l ⁻¹)	/II-a	EG	QR _{Ch}
	ІС-Тур	АТ-Тур	innerhalb Bandbreite	Grundniveau	Ref	H/G	G/M	H/G	G/M
Attersee	L-AL3	D1	Mitte	oligotroph	1,70	2,43	4,25	0,70	0,40
Hallstätter See	L-AL3	D1	Min	oligotroph	1,50	2,14	3,75	0,70	0,40
Irrsee	L-AL4	B2	Mitte	Oligo-mesotroph	3,00	4,00	7,32	0,75	0,41
Mondsee	L-AL3	D1	Mitte	oligotroph	1,70	2,43	4,25	0,70	0,40
Traunsee	L-AL3	D1	Min	oligotroph	1,50	2,14	3,75	0,70	0,40

Tabelle 3: Mögliche Zustandsklassen

sehr gut (Excellent)	nEQR > 0,7999
gut (Good)	nEQR > 0,5999 < 0,80
mäßig (Moderate)	nEQR > 0,3999 < 0,60
unbefriedigend (Poor)	nEQR > 0,1999 < 0,40
schlecht (Bad)	nEQR < 0,20

3. Ergebnisübersicht

3.1. Übersicht der Phytoplanktonergebnisse 2023

(Tab. 4)

Tabelle 4: Ökologische Zustandsklassen an den einzelnen Probenahmeterminen 2023 für alle Oberösterreichischen GZÜV-Seen, mit Jahres- und Dreijahres-Mittelwerten

ÖKOLOGISCHER ZUSTAND												
Oberösterreichische Seen 2023												
Datum	BV [mm³/l]	B.I.	Chl-a	BV nEQR	B.I. nEQR	Chl-a nEQR	Gesamtbe normier	te EQR		Zustandskla		
	[[-8-1	🛴	🕻	🕻	PN-Termin/ Einzeljahr	Dreijahres- mittel	PN- Termin	Einzeljahr	Dreijahres- mittel	
	ATTERSEE											
13.03.2023	0,04	4,49	0,50	1,00	0,84	1,00	0,922		sehr gut			
14.06.2023	0,15	5,37	0,70	1,00	1,00	1,00	1,000		sehr gut			
08.08.2023 15.11.2023	0,16 0,07	5,26 5,03	1,20 1,00	1,00 1,00	1,00 0,96	1,00 1,00	1,000 0,982		sehr gut sehr gut			
13.11.2023	0,07	5.04	0,85	1,00	0,90	1,00	0,983	0,960	Selli gut	sehr gut	sehr gut	
	0,10	0,04	0,00	1,00	0,01	•	STÄTTER S			Serii gat	Sem gat	
08.03.2023	0,04	3,11	0,20	1,00	0,52	1,00	0,762		qut			
19.06.2023	0,11	4,85	1,60	1,00	0,90	0,96	0,941		sehr gut			
16.08.2023	0,12	4,89	0,60	1,00	0,91	1,00	0,956		sehr gut			
13.11.2023	0,06	3,92	0,60	1,00	0,70	1,00	0,850		sehr gut			
	0,08	4,19	0,75	1,00	0,76	1,00	0,880	0,856		sehr gut	sehr gut	
							IRRSEE					
01.03.2023	0,73	4,90	2,30	0,90	1,00	1,00	0,976		sehr gut			
12.06.2023	0,32	4,51	1,40	1,00	1,00	1,00	1,000		sehr gut			
10.08.2023	0,21	3,81	1,40	1,00	0,90	1,00	0,950		sehr gut			
06.11.2023	0,48	4,64	2,60	1,00	1,00	1,00	1,000	0.000	sehr gut	a all a surd	a all manual	
	0,43	4,46	1,93	1,00	1,00	1,00	1,000	0,966		sehr gut	sehr gut	
40.04.0000	0.47	2.05	0.20	4.00	0.70		MONDSEE	I	a a la un annut			
16.01.2023 15.02.2023	0,17 0,73	3,85 3.63	2,30 3,40	1,00 0,65	0,70 0,65	0,83 0,67	0,807 0,656		sehr gut gut			
06.03.2023	0,73	3,67	4,00	0,63	0,66	0,62	0,641		gut			
03.04.2023	0,76	3,70	3,60	0,64	0,67	0,65	0,657		gut			
10.05.2023	0,92	4,32	2,40	0,61	0,81	0,81	0,758		gut			
05.06.2023	0,67	4,48	2,40	0,67	0,84	0,81	0,790		gut			
03.07.2023	0,59	3,68	2,90	0,70	0,66	0,72	0,687		gut			
01.08.2023	0,51	3,72	3,00	0,74	0,67	0,71	0,698		gut			
11.09.2023	0,59	3,72	3,50	0,70	0,67	0,66	0,675		gut			
02.10.2023	1,01	3,72	4,00	0,60	0,67	0,62	0,640		gut			
08.11.2023 04.12.2023	0,22	4,03 3,91	2,10	1,00 1,00	0,74 0,72	0,87 1,00	0,839 0,858		sehr gut sehr gut			
04.12.2023	0,16 0,597	3,91 3,87	1,20 2,90	0,70	0,72	0,72	0,858	0,706	Sem gut	gut	gut	
	0,397	3,07	2,90	U,/U	0,71			0,700		gut	gut	
24 02 2022	0.06	110	0.20	1.00	0.76		RAUNSEE		cohraut			
21.03.2023 21.06.2023	0,06 0,13	4,18 5,05	0,20 1,40	1,00 1,00	0,76 0,95	1,00 1,00	0,879 0,974		sehr gut sehr gut			
22.08.2023	0,13	3,62	1,20	0,87	0,64	1,00	0,786		gut			
20.11.2023	0,18	5,29	0,70	1,00	1,00	1,00	1,000		sehr gut			
	0,16	4,54	0,88	1,00	0,84	1,00	0,918	0,871		sehr gut	sehr gut	

Jahres- und Dreijahresmittel

Wie zuletzt im Jahr 2020, konnten 2023 mit Ausnahme des Mondsees wieder alle GZÜV-Seen mit "sehr gutem" ökologischem Zustand klassifiziert werden. Dabei blieben nur **Attersee** und **Irrsee** ganzjährig "sehr gut", **Traunsee** und **Hallstätter See** hingegen entsprachen im Spätsommer bzw. im Frühjahr nur einem "guten" Zustand. Mit einer nEQR_{Gesamt} von 1,00 konnte dabei der **Irrsee** als leitbildkonform für einen L-AL4-See eingestuft werden. Er entsprach dabei sowohl nach quantitativen Kriterien (nEQR_{BV} und nEQR_{Chl-a} = 1,00) als auch in seiner Artenzusammensetzung (nEQR_{B.I.} = 1,00) dem Sollzustand. Dem sehr nahe kam der **Attersee** mit EQR-Gesamt = 0,983, hier gab es nur minimale Abweichungen in der Dominanzstruktur des Phytoplanktons während der Frühjahrszirkulation, bei ganzjährig dem Sollzustand entsprechenden Algenmengen. Das "sehr gut" auf nur mittlerem Niveau lässt sich im **Hallstätter See** auf eine selten beobachtete Dominanz der It. Bewertungsschema eutrophe Bedingungen bevorzugenden Kieselalge *Diatoma ehrenbergii* zurückführen, wodurch der Brettum-Index im März auf nur "mäßiges" Niveau sank (nEQR_{B.I.} = 0,52). In ähnlicher Weise war auch im **Traunsee** eine trophisch vom Referenzzustand abweichende Artenzusammensetzung verantwortlich für den nur "guten" Zustand im Spätsommer, sowie, in geringerem Ausmaß, auch im Frühjahr (Tab. 4).

Der Zustand des **Mondsees** schließlich fügte sich neuerlich gut in das Bild vorangegangener Jahre ein, mit zumeist "guten" Werten, im Spätherbst und Winter allerdings "sehr guter" Beurteilung aufgrund der für diesen See atypisch geringen Biovolumina. (EQR_{Gesamt} 0.64 - 0.86). Bei fast vollständiger Übereinstimmung aller Bewertungsparameter, ergab sich im Jahresmittel eine "gute" EQR_{Gesamt} von 0.71, die damit auch dem Dreijahresmittel entsprach (Tab. 4) und auch leicht über dem langjährigem Mittel lag (EQR = 0.67) (Tab. 6).

Alle übrigen Seen schnitten 2023 im Vergleich von Jahresmittel und Dreijahresmittel seit 2021 verbessert ab. Am deutlichsten der **Traunsee** (EQR +0.05) und auch für **Irrsee** (EQR +0.03), **Attersee** und **Hallstätter See** (jeweils EQR +0.02) ergaben sich geringfügige Verbesserungen. Auch im Vergleich mit dem langjährigen Mittel seit 2007 wiesen 2023 alle Seen einen verbesserten Zustand auf (EQR_{Gesamt} +0.04-+0.11) (Tab. 6).

Zustandsklasse "sehr gut"

Irrsee – EQR_{Gesamt} 1,000:

Anhand aller Beurteilungsparameter im Jahresmittel leitbildkonform mit EQR $_{Gesamt}=1,00!$ Minimale Abweichungen davon gab es mit jeweils einem Messwert nur an zwei Einzelterminen. So im März aufgrund leicht über dem Referenzwert gelegener Biovolumina (nEQR $_{BV}$ 0,90), sowie im Sommer bei verstärktem Auftreten von als meso- bis meso-eutroph eingestufter Taxa (nE-QR $_{BJ}$ 0,90) (Tab. 6.2.4.).

Nach allen Beurteilungskriterien entsprach der See 2023 dem theoretischen Idealzustand (EQR_{Gesamt} = 1,00), bei ganzjährig "sehr gutem" ökologischem Zustand.

Attersee - EQR_{Gesamt} 0,983:

Alle Messwerte für Biovolumina und auch Chlorophyll-a blieben ganzjährig unter dem Referenzwert, womit der See in quantitativer Hinsicht dem Sollzustand ensprach. Lediglich hinsichtlich der Artenzusammensetzung gab es während der kühleren Jahreszeiten leichte Abweichungen, bei immer noch "sehr guten" nEQR_{B.I.}'s von 0,84 (März) bis 0,96 (November). Diesen lagen jeweils erhöhte Anteile trophisch ungünstig eingestufter Indikatorarten zugrunde, wobei diese nur im März nennenswert waren (*Cyclotella radiosa* [me], *Stephanodiscus neoastraea* [me] mit gemeinsam knapp 5 % BV-Anteil).

Nach quantitativen Kriterien stets leitbildkonform (nEQR_{BV}, nEQR_{ChI-a} = 1,00), wich die Artenzusammensetzung zeitweise leicht vom theoretischen Idealzustand ab (nEQR_{B.l.} = 0,97), bei ganzjährig "sehr gutem" ökologischem Zustand.

Traunsee – EQR_{Gesamt} 0,918:

Mit Zustandsschwankungen zwischen leitbildkonform "sehr gut" (Spätherbst) und "gut" (Sommer) ein für den Traunsee übliches Bild auch 2023. Typischerweise wich die Artenzusammensetzung zeitweise aufgrund nennenswerter Anteile auch meso-eutropher Indikatoren (*Chrysochromulina parva, Anabaena flosaquae* im August) vom trophischen Leitbild ab, mit dem Effekt eines stark schwankenden Brettum-Index (nEQR_{B.I.} 0,64 – 1,00). Im Jahresmittel aber dennoch "sehr gut", sowohl nach qualitativen als auch nach quantitativen Kriterien.

Im Jahresmittel "sehr guter" ökologischer Zustand, bei ganzjährig geringen Algen- und Chlorophyll-Werten, aber stark schwankendem Brettum-Index aufgrund nennenswerter Mengen mesobis meso-eutroph eingestufter Arten.

Hallstätter See – EQR_{Gesamt} 0,880:

Bei gewohnt geringer Algenproduktion zumeist leitbildkonform mit Biovolumen und Chlorophylla, schwankte der Trophie-Index stark zwischen nur "mäßig" (0,52 im Frühjahr) und "sehr gut" (0,90 – 0,91) während der Stagnationsphasen. Verantwortlich dafür waren wiederum einzelne als nährstoffliebend eingestufte Algenarten, allen voran die Kieselalge *Stephanodiscus neoastraea* [me], mit fast 10 % BV-Anteil im März. Begünstigt wurde der damit zeitweise stark erniedrigte und im Jahresmittel nur "guten" Zustand indizierende Brettum-Index (Tab. 4) durch eine auch 2023 wiederum hohe Dominanz trophisch nicht eingestufter Arten (Cryptoflagellaten!).

Im Jahresmittel 2023 "sehr guter" ökologischer Zustand, bei ganzjährig geringen Algenmengen und Chlorophyll-Werten, aber stark schwankendem Brettum-Index aufgrund erhöhter Mengen meso- bis meso-eutroph eingestufter Arten (nEQR_{B.I.} 0,52 – 0,91).

Zustandsklasse "gut"

Mondsee – EQR_{Gesamt} 0,708:

Während des überwiegenden Teil des Jahres stabil "gut", nur zu Jahresbeginn und ab spätherbstlicher Zirkulation, aufgrund sehr geringer Algendichten, in "sehr gutem" ökologischen Zustand. Auffallend war ganzjährig die zumeist hohe Übereinstimmung aller Bewertungsparameter, die auch im Jahresmittel zum bereits neunten Mal in Folge "guten ökologischen" Zustand ergaben. Einen stabilisierenden Effekt auf die Beurteilung des Mondsees hat bereits seit Jahren die ganzjährig meist hohe Dominanz des Cyanobakteriums *Planktothrix rubescens* [me] und während der kühleren Jahreszeit auch der filiformen Kieselalge *Aulacoseira subarctica* [om]. Neben Schwankungen dieser primären Charakterarten des Mondsees, waren 2023 v. a. wechselnd hohe Anteile weiterer Kieselalgen, mit sehr unterschiedlicher (*Stephanodiscus neoastraea* [me], *Cyclotella cyclopuncta* [o]) oder fehlender (*Fragilaria crotonensis*, *Asterionella formosa*) trophischer Gewichtung prägend für die Einstufung dieses Gewässers.

Zumeist "guter" Zustand, aufgrund fast ganzjährig überhöhter Biovolumina, bei überwiegender Dominanz meso-eutropher Taxa, v. a. aber starker Prägung durch Bestandsschwankungen des eudominanten Cyanobakteriums Planktothrix rubescens.

3.1.1. Artenzahlen

(Tab. 4.2.1. – 8.2.1, 4.2.4. – 8.2.4)

Ein quantitativer Vergleich der Artenvielfalt¹ des Algen- und Cyanobakterienplanktons Oberösterreichischer GZÜV-Seen sah 2023 ähnlich aus wie die Jahre davor: wiederum wurde im Mondsee mit 103 Taxa die höchste Diversität festgestellt, hier allerdings an 12 Terminen im Vergleich zu den jeweils nur 4 Terminen in den anderen Seen. Die höchste Artenzahl an einem Einzeltermin wurde ebenfalls im Mondsee mit 58 Taxa im August registriert, immerhin 50 waren es im Attersee im November, bei insgesamt 77 im gesamten Jahr. Eine etwas geringere Diversität wies der Traunsee auf (gesamt 70/ max. 42 [August]), gefolgt vom Irrsee (65/42 [Juni]). Das artenärmste Gewässer war wiederum der Hallstätter See mit insgesamt nur 50 Arten, bei maximal 29 Taxa an einem Einzeltermin (August). Die durchschnittlich höchste Artenzahl pro Einzeltermin wurde im Jahr 2023 mit 43,3 Arten im Mondsee erhoben, gefolgt vom Attersee (42,3), Irrsee (38,0) und Traunsee (32,0); mit durchschnittlich nur 23,5 Arten wiederum deutlich abgeschlagen der Hallstätter See. Zum Vergleich der Entwicklung der Artenzahlen in den einzelnen Seen während dieses und auch der vorangegangenen Jahre, sei auf die jeweilige Zusammenfassung der quantitativen und qualitativen Auswertungen in den Ergebnistabellen verwiesen (Tab. 4.2.1. bis Tab. 8.2.1., dies- und vorjährige Gutachten).

Seite 13 von 190

.

¹ Inkl. sub- und infrasubspezifische Taxa

3.1.2. Taxonomische Zusammensetzung nach Algenklassen²

(Fig. 4.3. – 8.3.: Biovolumen Algenklassen [%])

Zum Vergleich der Vorkommen quantitativ bedeutsamer Arten und deren anteilsmäßiger Bedeutung, sind im Anhang für alle Gewässer und zu allen Jahreszeiten jene Phytoplankton-Taxa gelistet, die relative Anteile von ≥ 3 % am jeweiligen Gesamt-Biovolumen erreichten, gemeinsam mit individuellen Biovolumina und relativen Anteilen (Tab. 10.2.).

Wie bereits im Vorjahr, waren auch im Jahresmittel 2023, mit Ausnahme des traditionell von Cryptomonaden dominierten Hallstätter Sees, alle Seen von Kieselalgen beherrscht. Im **Attersee** waren dabei Dinoflagellaten mit 37,2 % BV-Anteil, neben 38,9 % Kieselalgen, annähernd gleichbedeutend! Ko-dominant, neben 44 % Kieselalgen, waren die Dinophyceen mit 27,8 % Anteil auch im **Irrsee**, sowie mit 18,1 % praktisch gleichauf mit Kieselalgen (18,8 %), neben den vorherrschenden Cryptomonaden (43,5 %), auch im **Hallstätter See**. Im während der vergangenen Jahre häufig Cyanobakterien-dominierten **Mondsee** waren im vergangenen Jahr Kieselalgen mit 40,5 % die häufigste Algengruppe, "Blaualgen" blieben mit 34,5 % Anteil nur kodominant. Diese Ko-dominanz von Cyanobakterien geht in diesem See seit 2013 fast ausschließlich auf die filamentöse Art *Planktothrix rubescens* zurück, davor waren im Untersuchungszeitraum seit 2007 Cyanobakterien von deutlich geringerer Bedeutung oder es dominierten coccale Arten. Demgegenüber entpuppte sich der **Traunsee** einmal mehr als ausgesprochener "Kieselalgensee", mit einem im Jahresmittel sehr hohen Kieselalgen-Anteil von fast 67 %. Mit immerhin noch 19,6 % BV-Anteil stellten in diesem stark durchflossenen See (wie auch der Hallstätter See) Cryptomonaden die zweitstärkste Algengruppe.

3.2. Zustands-Vergleich mit den Vorjahren

Für das Jahr 2023 erfolgte die ökologische Beurteilung der Seen bereits zum elften Mal nach dem seit 2013 gültigen Bewertungsschema. Seither wird als quantitativer Parameter neben dem Biovolumen auch dessen Surrogatparameter Chlorophyll-a mit gleicher Gewichtung mitberücksichtigt und steht eine überarbeitete Liste der bewertungsrelevanten Indikator-Arten mit aktualisierter trophischer Einstufung zur Verfügung. Die aktuellen Ergebnisse sind daher erst mit jenen seit 2013 unmittelbar vergleichbar, nicht zuletzt weil sich im Jahr davor (2012) auch der Probenahme-Modus geändert hat: galt zuvor die dreifache Sichttiefe nach Secchi als Maß für die Ausdehnung der euphotischen Zone und damit die gewählte Probenahmetiefe, wurde ab 2012 für alle GZÜV-Seen einheitlich der Bereich 0-21 Meter als summierende Probenahmetiefe gewählt. Im Wesentlichen aber sollten die Beurteilungen der Seen von Anfang an vergleichbar sein, scharfe Grenzziehungen im unmittelbaren Bereich von Klassengrenzen aber mit Vorsicht interpretiert werden. So wurde z.B. der Hallstätter See in den ersten sechs Jahren stets nur mit "Gut" bewertet, in vier davon allerdings mit EQR-Werten von 0,78 - <0,80, also im unmittelbaren Übergangsbereich zu "sehr gut". Von 2013 bis 2023 entsprach der Hallstätter See dann einheitlich "sehr guten" Bedingungen, ausgenommen 2021 als er unmittelbar an der Klassengrenze zu sehr gut" nur mit "gut" beurteilt wurde. Diese in den vergangenen Jahren tendenzielle Verbes-

² Aus praktischen Gründen werden hier auch Cyanobakterien ("Blaualgen") mitbehandelt, obwohl es sich dabei um Prokaryoten (Gram-negative Bakterien) handelt. Alle Algen im engeren Sinne sind Eukaryoten.

serung dürfte nicht zuletzt auch auf die Verfeinerung des Bewertungsverfahrens mit Hinzunahme des Chlorophyll-a im Jahr 2013 zurückzuführen sein. Dies wurde bereits in meinen vorangegangenen Jahresberichten versucht herauszuarbeiten und bestätigt sich auch nach Hinzunahme der Daten von 2023. Vergleiche dazu Tab. 5 unten und die Vorjahresberichte seit 2016. Im langjährigen Vergleich der Seenentwicklung seit Wiederaufnahme des Monitorings im Jahr 2007 (Tab. 6), soll daher diese einschneidende methodische Änderung bei allfälligen Interpretationen mitberücksichtigt werden.

Im Zeitraum 2007 bis 2023 wurden nur **Attersee** und **Irrsee** durchgehend mit "sehr gutem" ökologischem Zustand beurteilt, das Dreijahresmittel seit 2021 entspricht mit EQR = 0,96 bzw. 0,97 in beiden Seen annähernd dem Sollzustand. Wiederum eine weitgehend leitbildkonforme Beurteilung für den Attersee gab es 2023 mit einer EQR_{Gesamt} = 0,98, der Irrsee entsprach mit EQR- $_{Gesamt}$ = 1,00 völlig dem idealisierten Sollzustand. Mit der seit 2015 bereits üblichen Ausnahme des **Mondsees**, entsprachen somit alle Seen sowohl im Dreijahresmittel seit 2021, als auch im langjährigen Mittel seit 2007, einem "sehr guten" Zustand. Der Mondsee liegt hier mit einer mittleren EQR von 0,71 (Dreijahresmittel) bzw. 0,67 (langjährig) im mittleren Bereich von "gut".

Die EQR_{Gesamt} des **Irrsees** schwankte in den letzten Jahren zwischen "sehr gut" auf hohem Niveau, bis zuletzt leitbildkonform (EQR_{Gesamt} = 1,00). Die im Vergleich zu den Vorjahren (2021: 0,92, 2022: 0,98) stetige Verbesserung erklärt sich, wie generell die Schwankungen während der letzten Jahre, primär aus einer veränderten Dominanzstruktur im Phytoplankton, vor allem aber aus einer unterschiedlich starken Populationsentfaltung des als meso-eutroph eingestuften *Planktothrix rubescens*. In den beiden Vorjahren war diese Art ganzjährig eudominant, allerdings mit deutlich geringeren Dichten im Jahr 2022. Zuletzt blieben die Populationsdichten des Cyanobakteriums vergleichweise gering, mit Verschiebungen zugunsten deutlich günstiger eingestuften centrischen Kieselalgen (*Cyclotella cyclopuncta*) und Dinoflagellaten (*Gymnodinium uberrimum*). Bei quantitativ weitgehend dem Sollzustand entsprechenden Bedingungen, erhöhte sich demzufolge der Brettum-Wert von 3,64 (EQR_{B.l.} = 0,84) im Jahresmittel 2021 auf zuletzt 4,46 (EQR_{B.l.} = 1,00). In ähnlicher Weise erklären fast stets Verschiebungen im Artengefüge die leichten Unterschiede in der Zustandsbeurteilung des Irrsees der vergangenen Jahre.

Im **Traunsee** der letzten Jahre waren die Zustandsschwankungen von allen Seen am ausgeprägtesten, mit Schwankungen der EQR_{Gesamt} von regelmäßig > 0,1 zwischen einzelnen Jahren, so von "guten" 0,78 im Vorjahr auf "sehr gute" 0,92 im Jahr 2023. Diese Werte lagen damit im einen Jahr erheblich unter, im darauffolgenden Jahr wieder erheblich über sowohl dem Dreijahresmittel, als auch dem langjährigen Mittel (Tab. 6). Wie 2022, kam es im Traunsee auch in den Jahren davor immer wieder zu einer vergleichsweise ungünstigen Gesamtbeurteilung, ungeachtet der auch im mehrjährigen Mittel fast stets geringen und annähernd leitbildkonformen Algenmengen. All dem lag zumeist eine methodische Schwäche des Bewertungsverfahrens zugrunde, ausgelöst durch einen nur geringen Anteil von am Brettum-Index beteiligten trophischen Indikatorarten. Dadurch blieb der EQR_{B.I.} labil und anfällig auf geringe Mengen trophisch ungünstig eingestufter Arten abträglich zu reagieren, oder aber bei Dominanz von Oligotrophie-Indikatoren eben umgekehrt. So erklärt sich die sprunghafte Verbesserung des ökologischen Zustandes des Traunsees seit 2022 nicht zuletzt aufgrund nur geringer Anteile der im Vorjahr kurzzeitig eudominanten *Diatoma ehrenbergii* [e], bei gleichzeitig stärkerem Autreten von *Cyclotella cyclopuncta* [o] im Jahr 2023. In ähnlicher Weise waren für oft erhebliche Schwankungen der EQR-

Jahresmittel, aber auch für Schwankungen zwischen Einzelterminen, überwiegend Änderungen innerhalb der Artengemeinschaft ausschlaggebend, v. a. Anteils-Verschiebungen innerhalb der Diatomeen, wie Verlagerungen von centrischen zu pennaten Arten, bzw. von trophisch eingestuften zu im Bewertungsschema nicht erfassten Arten.

Wie durchgehend seit 2015, ergab sich für den **Mondsee** auch 2023 wieder nur "guter" Zustand auf mittlerem Niveau (Tab. 6). Mit einer EQR_{Gesamt} = 0,71 entsprach er damit dem Mittel der letzten drei Jahre und lag auch leicht über dem langjährigen Durchschnitt. In den vergangenen drei Jahren zeigte sich im Mondsee allerdings eine leichte Verbesserung im Vergleich zum Zeitraum 2019/2020, als der See zeitweise nur mit "mäßigem" Zustand klassifiziert wurde, "sehr gut" aber an keinem einzigen Termin, wie zuletzt dreimal im Jahr 2023. Dabei fiel auf, dass während der letzten drei Jahre sowohl Algenmengen, als auch Chlorophyll-Gehalt fast ganzjährig und nur mit geringen Schwankungen, im mittleren bis niedrigen Bereich blieben, bei gleichzeitig nicht allzu stark vom theoretischen Sollzustand eines oligotrophen Voralpensees abweichender Artenzusammensetzung (EQR_{B.L} = 0,68 – 0,71). Dies wurde an fast allen Terminen und durch alle Bewertungs-Parameter in ähnlichem Ausmaß bestätigt.

Der Zustand des **Attersees** war 2023 annähernd leitbildkonform und mit EQR_{Gesamt} = 0,983 der beste seit 2016 (0,984). Zwischen den Jahren gab es seither nur geringfügige Schwankungen, ohne erkennbaren Trend. Die quantitativen Bewertungsparameter Biovolumen und Chlorophylla zeigten stets leitbildkonformen ökologischen Zustand an (nEQR_{BV,} nEQR_{Chl-a} jeweils 1,00). Die leichten Unterschiede in der EQR_{Gesamt} sind daher nur über geringfügige Verschiebungen innerhalb der Dominanzstruktur der Algenzönosen erklärbar. Je nach Auftreten von im Bewertungsschema trophisch ungünstig eingestufter Arten, wurde entsprechend deren Indikationsgewichts die EQR_{B,l.} mehr oder weniger abträglich beeinflusst. So erklärt sich der zuletzt sehr gute mittlere Brettum-Index von 5,04 (nEQR_{B,l.} = 0,97) vorrangig aus einer ganzjährigen Dominanz von Oligotrophie-Zeigern, wie jene der centrischen Kieselalagen *Cyclotella cyclopuncta* und *C. bodanica*, im Sommer auch des Dinoflagellaten *Gymnodinium uberrimum*. Kurzfristig nennenswerte Anteile auch meso-eutroph eingestufter Arten, kamen auch im Attersee regelmäßig vor, fielen im Jahresmittel aber selten ins Gewicht (Frühjahr 2023: *Planktothrix rubescens* [me] und *Cyclotella radiosa* [me], gemeinsam 7,4 %). So schwankte der nEQR_{B,l.} seit 2016 im stets "sehr guten" Bereich, zwischen 0,88 und 0,97.

Mit der langjährigen Entwicklung seit 2013 weitgehend vergleichbar war das Phytoplankton des Hallstätter Sees 2023. Mit einer EQR_{Gesamt} = 0,88, indizierte die Algenentwicklung wiederum "sehr gut" auf mittlerem Niveau und blieb damit auch etwas über dem Dreijahres- und auch langjährigen Mittel seit 2007. Dass dieser See trotz konstant geringer (leitbildkonformer!) Algenbiomassen (nEQR_{BV} und nEQR_{Chl-a} = 1,0) regelmäßig "nur" auf mittlerem Niveau "sehr gut" abschneidet, liegt am stets hohen Anteil von trophisch ungünstig eingestuften Arten, allen voran der Kieselalge *Stephanodiscus neoastraea*, einer Charakterart des ultra-oligotrophen Hallstätter Sees (vgl. Vorjahres-Berichte!). Ansonst unterlagen die Schwankungen vergangener Jahre keinem erkennbaren Trend, sondern waren stets auf Unterschiede in der Dominanzstruktur des Planktons zurückzuführen, v. a. auf das Verhältnis trophisch sehr unterschiedlich bewerteter Arten. Weiters auffallend für den Hallstätter See ist seine erhöhte Anfälligkeit, auf kurzzeitige Dominanzen trophisch ungünstig eingestufter Arten mit deutlichem Absacken des Brettum-Index

zu reagieren. Dies liegt nicht zuletzt an der relativen Artenarmut in diesem See und dem i. d. R. geringen Anteil von im Bewertungsschema erfassten Indikatorarten. Kurzfristige und vielleicht nur zufällig erfasste Einzelereignisse können daher, begünstigt durch die geringe Probennahme-Frequenz (n = 4), die Beurteilung nicht nur von Einzelterminen (Frühjahr 2023: "gut" durch *Diatoma ehrenbergii* [e]), sondern auch ganze Jahresbewertungen (2021: "gut" durch *Mougeotia* sp. [e]), signifikant beeinflussen.

Tabelle 5: Vergleich der mittleren EQR_{Gesamt} für die Datenerhebungs-Zeiträume vor und nach Verfeinerung des Bewertungsverfahrens ab 2013

ATTERSEE	HALLSTÄTTER SEE	IRRSEE	MONDSEE	TRAUNSEE							
	Gesamt E	QR - Mittel	2007-2012								
0,87	0,76	0,90	0,59	0,72							
	Gesamt E	QR - Mittel	2013-2023								
0,96	0,89	0,95	0,71	0,87							
Pr	Prozentuelle Zunahme der EQR _{Gesamt}										
11,4%	17,9%	6,3%	20,5%	21%							

 $\textit{Tabelle 6}: \ Entwicklung \ der \ EQR_{Gesamt} \ im \ Jahresmittel \ seit \ 2007 \ für \ alle \ Oberösterreichischen \ GZ\"{UV}-Seen.$

		EC	QR gesa	mt	
Jahr	ATTERSEE	HALLSTÄTTER SEE	IRRSEE	MONDSEE	TRAUNSEE
2007	0,91	0,74	0,88	0,54	0,62
2008	0,86	0,80	0,90	0,59	0,72
2009	0,86	0,63	0,87	0,66	0,77
2010	0,84	0,79	0,94	0,53	0,59
2011	0,87	0,79	0,91	0,57	0,78
2012	0,85	0,78	0,89	0,64	0,82
2013	0,95	0,91	0,89	0,70	0,99
2014	0,99	0,99	0,96	0,82	0,93
2015	0,99	0,91	0,96	0,70	0,88
2016	0,98	0,87	0,96	0,70	0,78
2017	0,96	0,92	0,94	0,74	0,87
2018	0,95	0,88	0,99	0,70	0,85
2019	0,95	0,89	0,92	0,68	0,80
2020	0,94	0,86	0,99	0,64	0,82
2021	0,94	0,80	0,92	0,72	0,92
2022	0,96	0,89	0,98	0,69	0,78
2023	0,98	0,88	1,00	0,71	0,92
		lang	jähriges N	littel	
sehr gut	0,93	0,84	0,93	0,67	0,81
gut		Dreijahre	smittel 20	21 - 2023	
mäßig	0,96	0,86	0,97	0,71	0,87

4. ATTERSEE

4.1. Gutachten Phytoplankton

Ergebnisübersicht für das Untersuchungsjahr 2023 sowie 3-Jahresmittel

Ergebnisübersicht der Untersuchungstermine eines Jahres

sowie 3-Jahresmittel

Datum	[µgL ']		Brettum-Index
13.03.2023	0,50	0,04	4,49
14.06.2023	0,70	0,15	5,37
08.08.2023	1,20	0,16	5,26
15.11.2023	1,00	0,07	5,03

^{*}Abz. heterotrophe Arten

Jahr		ophyll-a mittelwert)	Biovolu (Jahresmit			im-Index mittelwert)	Gesamtbewertung (gewichteter MW)	Ökologische Zustandsklasse
	[µgL ⁻¹]	nEQR	[mm ³ L ⁻¹]	nEQR	Index	nEQR	nEQR	
2021	0,85	1,00	0,15	1,00	4,65	0,88	0,939	sehr gut
2022	0,83	1,00	0,17	1,00	4,81	0,92	0,958	sehr gut
2023	0,85	1,00	0,10	1,00	5,04	0,97	0,983	sehr gut
		3	3 Jahresmitt	el			0,960	sehr gut

BEURTEILUNG

Qualitätselement Phytoplankton im Untersuchungsjahr 2023	<u>sehr gut</u>
Qualitätselement Phytoplankton im 3-Jahresmittel (2021-2023)	sehr aut

Angaben zum See, zur Untersuchungsstelle und Probenahmen

See und Untersuchungssto	elle					
Gewässername	Attersee		Höhe Messpunkt [m]		469	
Messstellenname			Fläche [km²]		46,2	
(GZÜV-)Messstellen_ID			Maximale Länge [km]		18,9	
Rechtswert	466.214		Maximale Breite [km]		3,5	
Hochwert	305.706		Maximale Tiefe [m]		171	
Median	31		Mittlere Tiefe [m]		84	
Detail WK Name			Gesamtvolumen [Mio. m³]		3890	
Detail WK ID			Mittlerer Abfluss (MQ) [m³/s]		17,6	
IC-Seentyp (Interkalibrierung)	L-AL3		Abfluss		Ager	
AT-Seentyp (National)	D1		Wassererneuerungszeit / theoretisch [Jahre]		7,1	
Trophischer Grundzustand	oligotroph		Durchmischung / Schichtungstyp		Holo- / monomiktisch	
Zugrunde liegenden Prüfb	erichte					
		1. Termin	2. Termin	3. Termin		4. Termin
Nummern der zugrunde liegenden I	Prüfberichte	2023/01	2023/02	2023/0	3	2023/04
Probenahmetermine der zugrunde berichte	liegende Prüf-	2023-03-13	2023-06-14	2023-08-	2023-08-08 2023-11-	

Ergebnisübersicht – Zusammenfassung der 4 Beprobungstermine

Ökologische Zustandsklasse

Chlorophyll-a Konzentration	μgL ⁻¹	EQR	nEQR
Referenzwert	1,70	1,00	1,00
Grenze sehr gut/gut	2,43	0,70	0,80
Grenze gut/mäßig	4,25	0,40	0,60
Jahresmittel	0,85	2,00	1,00
Biovolumen	mm³L ⁻¹	EQR	nEQR
Referenzwert	0,25	1,00	1,00
Grenze sehr gut/gut	0,42	0,60	0,80
Grenze gut/mäßig	1,00	0,25	0,60
Jahresmittel	0,10	2,41	1,00
Brettum-Index	Wert	EQR	nEQR
Referenzwert	5,19	1,00	1,00
Grenze sehr gut/gut	4,29	0,83	0,80
Grenze gut/mäßig	3,39	0,65	0,60
Jahresmittel	5,04	0,97	0,97
Normierte EQR ges	amt	0,983	

Sehr gut

4.2. Ergebnistabellen

Tab. 4.2.1. Zusammenfassung quantitative und qualitative Phytoplanktonproben

ATTERSEE 2023	Al	genfrisc	chgewic	cht [µg	l ⁻¹]
TAXON	13.03.	14.06.	08.08.	15.11.	Mittel
Cyanobacteria					
Aphanocapsa elachista			0	0	
Chroococcus limneticus			0	0	
Lemmermanniella sp.				0	
Planktothrix rubescens	1,33		0,40	0,29	0,50
Snowella lacustris	0,07		0	0	0,02
Chlorophyceae					
Botryococcus braunii	0,14				0,04
Coelastrum sp.				0	
Elakatothrix genevensis	0,14	0	0	0	0,04
Oocystis sp.		0	0	0	
Pediastrum boryanum			0	0	
Planctonema lauterbornii			0	0	
Planktosphaeria gelatinosa				0	
Pseudosphaerocystis lacustris				0,04	0,01
Tetraselmis cordiformis	0				
Tetrastrum triangulare				0	
Conjugatophyceae					
Cosmarium depressum	0			0	
Xanthophyceae					
Gloeobotrys limneticus		0			
Tetraedriella jovetii	0				
Chrysophyceae					
Bitrichia chodatii			0		
Chrysidiastrum catenatum			11,21	1,69	3,22
Dinobryon bavaricum				0,16	0,04
Dinobryon crenulatum		0		0	
Dinobryon cylindricum		0	0	0,53	0,13
Dinobryon divergens	0,38	4,33	12,02	0,43	4,29
Dinobryon sertularia				0	
Dinobryon sociale			6,89	0,20	1,77
Mallomonas elongata	0,13		0		0,03
Mallomonas sp.	0		0	0	
Pseudopedinella sp.	0		0	0	
Uroglena sp.				2,02	0,50
Haptophyceae					
Chrysochromulina parva	0	3,08	0	0,31	0,85
Dinophyceae					
Ceratium cornutum		4,60	2,48		1,77
Ceratium hirundinella	3,33	34,48	29,29	25,56	23,17

Dinophyceae indet. Glenodinium sp. S.22 11,37 11,42 2,58 7,65 Gymnodinium helveticum S.22 11,37 11,42 2,58 7,65 Gymnodinium sp. 0,38 1,79 3,95 1,76 1,97 2,64 Peridinium sp. 0,65 9,90 2,64 Peridinium sp. Peridinium sp. 2,66 1,42 1,02 Peridinium umbonatum - Complex 2,66 1,42 1,02 Peridinium willei 1,10 5,09 1,55 Cryptophyceae Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas marssonii 0,75 0,19 0,10 0			•	•	•	
Symnodinium helveticum				6,94		1,74
Gymnodinium sp. 0,38 1,79 3,95 1,76 1,97 Gymnodinium uberrimum 0,65 9,90 2,64 Peridinium willei 1,10 5,09 1,02 Peridinium willei 1,10 5,09 1,55 Cryptophyceae 0,80 0,76 11,73 4,34 4,41 Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas rerosa 0,60 0,75 0,61 0,19 2,66 6,51 1,10 4,32 2,48 Bacillariophyceae 0,4 0,48 0,71	•		44.07	44.40		7.05
Gymnodinium uberrimum peridinium sp. 0,65 9,90 2,64 Peridinium yp. 2,66 1,42 1,02 Peridinium willei 1,10 5,09 1,55 Cryptophyceae 0,80 0,76 11,73 4,34 4,41 Cryptomonas rerssonii 0,75 0,19 0,19 0,75 0,19 Cryptomonas sp. 0 0 0 0 0 0 0 0,19 0,12 0,10 0 0 0 0 <						
Peridinium sp. Peridinium umbonatum - Complex 2,66 1,42 1,02 Peridinium willei 1,10 5,09 1,55 Cryptophyceae 2,66 1,42 1,02 Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas sp. ° ° ° ° Plagioselmis nannoplanctica 4,57 14,91 6,81 2,36 7,16 Rhodomonas lens 6,05 2,36 1,52 ° 2,48 Bacillariophyceae Achnanthes sp. ° ° ° 0,10 3,32 Asterionella formosa 1,85 0,14 0,26 11,04 3,32 Atlacoseira subarctica 0,48 ° 0,08 0,14 0,26 11,04 3,32 Aulacoseira subarctica 0,48 0,14 0,26 11,04 3,32 Cyclotella of. comensis 6,54 1,63 4,89 Cyclotella of. comensis 6,54 1,64 0,7 0,67 0,67			1,79		1,76	
Peridinium umbonatum - Complex Peridinium willei 1,10 5,09 1,02 Cryptophyceae 0,80 0,76 11,73 4,34 4,41 Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas marssonii 0,75 0,75 0,19 Cryptomonas sp. 0 0 0 7,16 Rhodomonas lens 6,05 2,36 1,52 ∞ 2,48 Bacillariophyceae Achnanthes sp. 0 0 0 0 0,14 0,26 11,04 3,32 Asterionella formosa 1,85 0,14 0,26 11,04 3,32 Asterionella formosa 1,81 4,89 0,49 0,6 1,48 48,89 34,92 5,88		0,65		9,90		2,64
Peridinium willei 1,10 5,09 1,55 Cryptophyceae 0,80 0,76 11,73 4,34 4,41 Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas marssonii 0,75 0,19 0,19 Cryptomonas sp. 0 0 0 7,16 Rhodomonas lens 6,05 2,36 1,52 ∞ 2,48 Bacillariophyceae Achnanthes sp. 0 0 0 0 0,12 0,08 0,14 0,26 11,04 3,32 4,89 0,14 0,26 11,04 3,32 4,80 0,71 0,74 0,74 0,71 0,74 0,74 0,71 0,74 0,74 0,71 0,74 0,74 0,71 0,74 0,74 0,71 0,74 0,74 0,71 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74<	•					
Cryptophyceae Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas marssonii 0,75 0,75 0,19 Plagioselmis nannoplanctica 4,57 14,91 6,81 2,36 7,16 Rhodomonas lens 6,05 2,36 1,52 ° 2,48 Bacillariophyceae Achnanthes sp. ° ° 0,08 0,14 Asterionella formosa 1,85 0,14 0,26 11,04 3,32 Aulacoseira subarctica 0,48 ° 0,08 0,14 Cyclotella cf. atomus 1,40 0,86 0,71 0,74 Cyclotella cf. comensis 6,54 1,63 4,89 Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,07 0,65 0,67 0,48 0,47 Cyclotella radiosa 1,58 2,51 0,06 0,5	•		2,66			
Cryptomonas erosa 0,80 0,76 11,73 4,34 4,41 Cryptomonas sp. 0,75 0,75 0,19 Plagioselmis nannoplanctica 4,57 14,91 6,81 2,36 7,16 Rhodomonas lens 6,05 2,36 1,52 ° 2,48 Bacillariophyceae Control of the property of		1,10		5,09		1,55
Cryptomonas marssonii 0,19 0,75 0,19 Plagioselmis nannoplanctica 4,57 14,91 6,81 2,36 7,16 Rhodomonas lens 6,05 2,36 1,52 ° 2,48 Bacillariophyceae 3 3 1,52 ° 2,48 Achnanthes sp. ° ° 0,08 0,14 0,26 11,04 3,32 Aulacoseira subarctica 0,48 ° 0,08 0,14 0,26 11,04 3,32 Aulacoseira subarctica 0,48 ° 0,08 0,14 0,71 0,74 Cyclotella fict catomus 1,40 0,86 0,71 0,74 0,74 0,74 0,71 0,74 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Cryptomonas sp. Plagioselmis nannoplanctica 4,57 14,91 6,81 2,36 7,16 Rhodomonas lens 6,05 2,36 1,52 ° 2,48 Bacillariophyceae Company of the property of the prope		0,80	0,76		4,34	
Cryptorthorius sp. Cryptor			_			0,19
Rhodomonas lens						
Second Health State	,	-				
Achnanthes sp. ° 0,14 0,26 11,04 3,32 Aulacoseira subarctica 0,48 ° 0,08 0,14 0,26 0,14 3,32 Aulacoseira subarctica 0,48 ° 0,08 0,14 0,71 0,74 Cyclotella cf. atomus 1,40 0,86 0,71 0,74 0,74 Cyclotella cf. comensis 6,54 1,63 4,89 Cyclotella cf. comensis 6,54 1,64 1,64 Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella intermedia 0,07 0,65 0,67 0,48 0,47 Cyclotella cocellata 0,06 1,74 0,66 0,51 0,67 Cyclotella radiosa 1,58 2,51 0,06 0,12 0,64 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella lanceolata 0,39 ° 0,49 0,82 0,42 Cymbella sp. 0 ° 0,49 0,82 0,42 Discostella glomerata 0,39 </td <td></td> <td>6,05</td> <td>2,36</td> <td>1,52</td> <td>0</td> <td>2,48</td>		6,05	2,36	1,52	0	2,48
Asterionella formosa Asterionella formosa Aulacoseira subarctica Cyclotella cf. atomus 1,40 0,86 0,71 0,71 0,74 Cyclotella bodanica 2,26 15,65 1,63 4,89 Cyclotella cf. comensis 6,54 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,07 Cyclotella intermedia 0,06 Cyclotella radiosa 1,58 2,51 0,06 0,12 0,64 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea Cymbella lanceolata Cymbella sp. Diatoma ehrenbergii Discostella glomerata Discostella glomerata Discostella stelligera Eunotia sp. Fragilaria crotonensis Navicula sp. Nitzschia sp. Stephanocostis chantaica Stephanodiscus minutulus Stephanodiscus meoastraea Ulnaria delicatissima Ulnaria delicatissima Varicupla pl. Cyclotellation Cymbellaria (0,06) Cyclotella ocellation Cymbella lanceolata Cymbella lanceolata Cymbella sp. Cymatopleura solea Cymbella innecolata Cymbella sp. Cymatopleura solea Cymbella sp. Cymatopleura solea Cymbella innecolata Cymbella innecolata Cymbella innecolata Cymbella innecolata Cymbella innecolata Cymbella sp. Cymatopleura solea Cymbella innecolata Cymbella innecolat						
Aulacoseira subarctica 0,48 ° 0,08 0,14 Cyclotella cf. atomus 1,40 0,86 0,71 0,74 Cyclotella bodanica 2,26 15,65 1,63 4,89 Cyclotella cf. comensis 6,54 1,64 1,64 Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella ocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella sp. ° ° ° ° ° Cymbella sp. ° ° ° ° ° Discostella glomerata 0,39 ° 0,49 0,82 0,42 Discostella stelligera ° ° ° ° ° 1,10	•					
Cyclotella cf. atomus 1,40 0,86 0,71 0,74 Cyclotella bodanica 2,26 15,65 1,63 4,89 Cyclotella cf. comensis 6,54 1,64 Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella cocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 0,12 0,64 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella lanceolata 0 0 0,49 0,55 2,88 Cymbella sp. 0 0 0,42 0,42 Discostella glomerata 0,39 0 0,49 0,82 0,42 Discostella stelligera 0 0 0 0 0 0 0	Asterionella formosa	1,85	0,14	0,26		
Cyclotella bodanica 2,26 15,65 1,63 4,89 Cyclotella cf. comensis 6,54 1,64 1,64 Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella cocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 0,12 0,64 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella lanceolata 0 0 0 0 1,04 Cymbella sp. 0 0 0 0 0 0 2,88 Cymbella sp. 0 <td< td=""><td>Aulacoseira subarctica</td><td>0,48</td><td></td><td>0</td><td>0,08</td><td>0,14</td></td<>	Aulacoseira subarctica	0,48		0	0,08	0,14
Cyclotella cf. comensis 6,54 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella cocllata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° " " " " 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° " " " " " 1,04 Cyclotella sp. " " " " " " " " " " " " " " " "	Cyclotella cf. atomus	1,40	0,86		0,71	0,74
Cyclotella cyclopuncta 1,88 48,89 34,92 5,88 22,89 Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 2,16 0,51 0,67 0,64 0,72 0,64 Cyclotella ocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella sp. ° " " " " " 1,04 Cymbella sp. ° " 1,94 0,55 2,88 " " " " " " " " " 1,94	Cyclotella bodanica	2,26	15,65	1,63		4,89
Cyclotella distinguenda 0,07 0,65 0,67 0,48 0,47 Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella cocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymbella sp. ° ° ° ° 0,42 Cymbella sp. ° ° ° ° 0,42 Diatoma ehrenbergii ° ° 0,49 0,82 0,42 Discostella glomerata 0,39 ° 0,49 0,82 0,42 Discostella stelligera ° ° 0,42 0,33 1,10 Navicula sp. ° ° ° 1,10 Nitzschia sp. ° ° 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Steph	Cyclotella cf. comensis		6,54			1,64
Cyclotella intermedia 0,06 1,74 0,66 0,12 0,64 Cyclotella coellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° ° ° 2,88 Cymbella lanceolata ° ° ° ° Cymbella sp. ° ° ° ° Diatoma ehrenbergii ° ° 0,49 0,82 0,42 Discostella glomerata 0,39 ° 0,49 0,82 0,42 Discostella stelligera ° ° ° 1,32 0,33 Erragilaria crotonensis 3,70 0,70 ° ° 1,10 Navicula sp. ° ° 0,12 0,05 Stephanocostis chantaica 0,14 1,95 4,52 1,65 Stephanodiscus meoastraea °<	Cyclotella cyclopuncta	1,88	48,89	34,92	5,88	22,89
Cyclotella ocellata 0,06 1,74 0,66 0,12 0,64 Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° ° ° ° 2,88 Cymatopleura solea ° ° ° ° 2,88 Cymbella lanceolata ° ° ° ° ° ° Cymbella lanceolata °	Cyclotella distinguenda	0,07	0,65	0,67	0,48	0,47
Cyclotella radiosa 1,58 2,51 0,06 ° 1,04 Cyclotella sp. 5,49 3,54 1,94 0,55 2,88 Cymatopleura solea ° ° ° 2,88 Cymbella lanceolata ° ° ° ° Cymbella sp. ° ° ° ° Diatoma ehrenbergii ° 0,39 ° 0,49 0,82 0,42 Discostella glomerata 0,39 ° 0,49 0,82 0,42 Discostella stelligera ° ° ° 1,32 0,33 Eunotia sp. ° ° ° 1,10 Navicula sp. ° ° 1,10 Navicula sp. ° ° 1,10 Nitzschia sp. ° 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Stephanodiscus neoastraea 0,30 ° 0,07 0,07 Tabellaria flocculosa ° 0,66 0,66 0,33 Ulnaria delicatissima 0,22 <	Cyclotella intermedia			2,16	0,51	0,67
Cyclotella radiosa Cyclotella sp. Cymatopleura solea Cymbella lanceolata Cymbella sp. Diatoma ehrenbergii Discostella glomerata Discostella stelligera Eunotia sp. Fragilaria crotonensis Navicula sp. Nitzschia sp. Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria ulna 5,49 3,54 1,94 0,55 2,88 0,06 0,05 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42	Cyclotella ocellata	0,06	1,74	0,66	0,12	0,64
Cymbella lanceolata Cymbella sp. Diatoma ehrenbergii Discostella glomerata Discostella stelligera Eunotia sp. Fragilaria crotonensis Navicula sp. Nitzschia sp. Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria ulna Picoplankton < 5 μm	Cyclotella radiosa	1,58	2,51	0,06	0	1,04
Cymbella lanceolata Cymbella sp. Diatoma ehrenbergii Discostella glomerata Discostella stelligera Discostella glomerata Discostella g	Cyclotella sp.	5,49	3,54	1,94	0,55	2,88
Cymbella sp. ° <	Cymatopleura solea	0				
Diatoma ehrenbergii Discostella glomerata Discostella stelligera Discostella glomerata Discostella ploste Discostella stelligera Discostella glomerata Discostella glomerata Discostella ploste Discostella ploste Discostella plosted Discostella plosted Discostella glomerata Discostella plosted Discostella pl	Cymbella lanceolata			0		
Discostella glomerata 0,39 ° 0,49 0,82 0,42 Discostella stelligera ° 0,33 1,32 0,33 Eunotia sp. ° 0,70 ° 1,10 Fragilaria crotonensis 3,70 0,70 ° 1,10 Navicula sp. ° 0,10 0,12 0,05 Stephanocostis chantaica 0,10 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Stephanodiscus minutulus ° 0,30 0,07 Tabellaria flocculosa ° 0,66 0,66 0,33 Ulnaria delicatissima 0,22 0,11 0,08 Ulnaria ulna 0,27 0,07	Cymbella sp.			0		
Discostella stelligera Eunotia sp. Fragilaria crotonensis Nitzschia sp. Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria ulna Picoplankton < 5 μm 1,32 0,33 1,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70	Diatoma ehrenbergii	0			0	
Eunotia sp. Fragilaria crotonensis 3,70 0,70 ° 1,10 Navicula sp. Nitzschia sp. Stephanocostis chantaica 0,10 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Stephanodiscus minutulus Stephanodiscus neoastraea 0,30 0,07 Tabellaria flocculosa Ulnaria delicatissima Ulnaria delicatissima var. angustissima 0,22 0,07 Picoplankton < 5 μm	Discostella glomerata	0,39	0	0,49	0,82	0,42
Eunotia sp. Fragilaria crotonensis 3,70 0,70 ° 1,10 Navicula sp. Nitzschia sp. Stephanocostis chantaica 0,10 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Stephanodiscus minutulus Stephanodiscus neoastraea 0,30 0,07 Tabellaria flocculosa Ulnaria delicatissima Ulnaria delicatissima var. angustissima 0,22 0,07 Picoplankton < 5 μm	Discostella stelligera				1,32	0,33
Fragilaria crotonensis3,700,70°1,10Navicula sp.°0,70°1,10Nitzschia sp.°0,120,05Stephanocostis chantaica0,101,954,521,65Stephanodiscus alpinus0,141,954,521,65Stephanodiscus minutulus°0,300,07Tabellaria flocculosa°0,660,660,33Ulnaria delicatissima0,220,110,08Ulnaria ulna0,270,07	Eunotia sp.	0		0		
Navicula sp. Nitzschia sp. Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria ulna Picoplankton < 5 μm	Fragilaria crotonensis	3,70	0,70	0	0	1,10
Nitzschia sp. Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria ulna O,10 O,12 O,05 O,14 O,19 O,19 O,07 O,07 O,07 O,07 O,06 O,06 O,03 O,07 O,07 O,07 O,07 O,07 O,07 O,07 O,07			ŕ			ŕ
Stephanocostis chantaica 0,10 0,12 0,05 Stephanodiscus alpinus 0,14 1,95 4,52 1,65 Stephanodiscus minutulus ° 0,30 0,07 Stephanodiscus neoastraea 0,30 0,07 0,07 Tabellaria flocculosa ° 0,66 0,66 0,33 Ulnaria delicatissima var. angustissima 0,22 0,11 0,08 Ulnaria ulna 0,27 0,07 0,07 Picoplankton < 5 μm	1			0		
Stephanodiscus alpinus0,141,954,521,65Stephanodiscus minutulus0,3000,07Stephanodiscus neoastraea0,3000,07Tabellaria flocculosa00,660,660,33Ulnaria delicatissima var. angustissima0,220,110,08Ulnaria ulna0,270,070,07	•	0.10			0.12	0.05
Stephanodiscus minutulus Stephanodiscus neoastraea 0,30 0,07 Tabellaria flocculosa Ulnaria delicatissima Ulnaria delicatissima var. angustissima 0,22 0,11 0,08 Ulnaria ulna 0,27 Picoplankton < 5 µm				1.95		
Stephanodiscus neoastraea 0,30 0,07 Tabellaria flocculosa Ulnaria delicatissima 0,66 0,66 0,33 Ulnaria delicatissima var. angustissima 0,22 0,11 0,08 Ulnaria ulna 0,27 0,07 Picoplankton < 5 µm		0,	0	.,55	.,52	.,55
Tabellaria flocculosa Ulnaria delicatissima Ulnaria delicatissima var. angustissima 0,22 0,66 0,33 0,11 0,08 Ulnaria ulna 0,27 Picoplankton < 5 μm	1 · ·	0.30				0.07
Ulnaria delicatissima 0,66 0,66 0,33 Ulnaria delicatissima var. angustissima 0,22 0,11 0,08 Ulnaria ulna 0,27 0,07 Picoplankton < 5 μm	1					0,07
Ulnaria delicatissima var. angustissima $0,22$ $0,11$ $0,08$ Ulnaria ulna $0,27$ $0,07$ Picoplankton < 5 μ m			0.66		0.66	0.33
Ulnaria ulna 0,27 0,07 Picoplankton < 5 μm		0.22	0,00			
Picoplankton < 5 μm	1				0,11	
		0,27				0,07
Picopiankton indet. 3,80 0,95	· · ·					
	Picoplankton indet.				3,80	0,95

Frischgewicht tot. (µg/l)	44,5	162,2	166,5	73,0	111,6
Biovolumen tot. (mm³/l)	0,044	0,162	0,167	0,073	0,112
abz. heterotrophe (mm³/l)	0,039	0,151	0,155	0,070	0,104
$1000 \mu g/l = 1 \text{ mm}^3/l$					
Chlorophyll-a [µg/l]	0,5	0,7	1,2	1,0	0,85
Relativer Anteil Chlorophyll-a [%]	1,12	0,43	0,72	1,37	0,91
	•		•	•	•
Anzahl Taxa / Termin	43	29	47	50	
Anzahl Taxa insgesamt					77

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst summarisch in Biovolumen [mm^3 L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm^3 /l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch qualitative Ergebnisse eingeflossen: das Auftreten von Arten in nicht quantifizierbarer Dichte ist als ° gekennzeichnet.

Tab. 4.2.2. Zusammenfassung Algenklassen der quantitativen Phytoplanktonproben

ATTERSEE 2023	Alg	jenfriso	chgewi	cht [µg	Γ¹]
Algenklasse	13.03.	14.06.	.80.80	15.11.	Mittel
Bacillariophyceae Centrales	14,14	80,36	44,47	15,12	38,52
Bacillariophyceae Pennales	6,04	1,49	0,26	11,80	4,90
Chlorophyceae	0,28			0,04	0,08
Chrysophyceae	0,51	4,33	30,11	5,03	9,99
Conjugatophyceae Desmid.					
Conjugatophyceae Zygnem.					
Cryptophyceae	11,43	18,04	20,80	6,70	14,24
Cyanobacteria coccal	0,07				0,02
Cyanobacteria filamentös	1,33		0,40	0,29	0,50
Dinophyceae	10,68	54,90	70,51	29,90	41,50
Euglenophyceae					
Haptophyceae		3,08		0,31	0,85
Prasinophyceae					
Ulvophyceae					
Xanthophyceae					
Phytoplankton indet.				3,8	0,95
Frischgewicht tot. (µg/l)	44,5	162,2	166,5	73,0	111,6
Biovolumen tot. (mm³/l)	0,044	0,162	0,167	0,073	0,112
abz. heterotrophe (mm³/l)	0,039	0,151	0,155	0,070	0,104
$1000 \mu g/l = 1 \text{ mm}^3/l$					

Tab. 4.2.3. Brettum Scores:

Werte der einzelnen Trophie-Klassen, für 2023 im Attersee quantifizierte Taxa

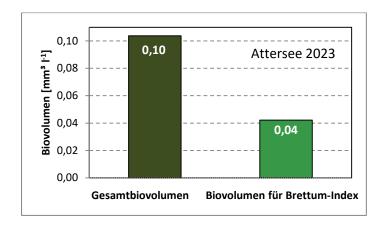
ATTERSEE 2023	Rebecca-ID	Brettu	m-Indexw	verte der e	einzelnen	Trophiek	lassen
Taxon		<=5	5-8	8-15	15-30	30-60	>60
Asterionella formosa	R0135		•				
Aulacoseira subarctica	R0033		1	8	1		
Botryococcus braunii	R0493	5	2	2	1		
Ceratium cornutum	R1670						
Ceratium hirundinella	R1672						
Chrysidiastrum catenatum	R1163						
Chrysochromulina parva	R1818			1	3	4	2
Cryptomonas erosa	R1378						
Cryptomonas marssonii	R1382						
Cyclotella bodanica	R0040	7	3				
Cyclotella cf. atomus	R0039						
Cyclotella cf. comensis	R0042	7	2	1			
Cyclotella cyclopuncta	R2195	7	3				
Cyclotella distinguenda	R2196	8	1	1			
Cyclotella intermedia	R0040	7	3				
Cyclotella ocellata	R0048		1	1	4	3	1
Cyclotella radiosa	R0051			1	3	5	1
Cyclotella sp.	R0053						
Dinobryon bavaricum	R1066	3	3	2	2		
Dinobryon cylindricum	R1070	7	2	1			
Dinobryon divergens	R1073						
Dinobryon sociale	R1083						
Dinophyceae indet.	R1708						
Discostella glomerata	R2058	6	3	1			
Discostella stelligera	R2060						
Elakatothrix genevensis	R0597						
Fragilaria crotonensis	R0223						
Gymnodinium sp.	R1654	1	5	2	1	1	
Gymnodinium uberrimum	R1660	1	6	2	1		
Mallomonas elongata	R1103						
Peridinium umbonatum - Complex	R1903	7	2		1		
Peridinium willei	R1704	1	4	2	1	1	1
Picoplankton indet.	R2617						
Plagioselmis nannoplanctica	R2162						
Planktothrix rubescens	R1617	1	1	3	4	1	
Pseudosphaerocystis lacustris	R0736			2	5	2	1
Rhodomonas lens	R1407						
Snowella lacustris	R1510		1	4	4	1	
Stephanocostis chantaica	R0075						
Stephanodiscus alpinus	R0076						
Stephanodiscus neoastraea	R0083		1	2	4	3	
Ulnaria delicatissima	R2173						

Ulnaria delicatissima var. angustissima	R2174	2	3	3	2
Ulnaria ulna	R2175				
Uroglena sp.	R1151		3	3	3

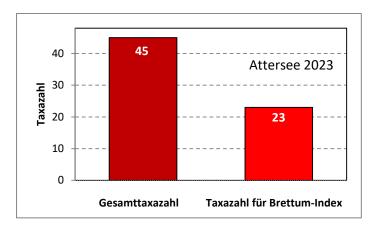
Relativer Anteil quantifizierter Taxa für Brettum Index [%]	51,1
Relativer Anteil des Biovolumen der eingestuften Taxa am Gesamtbiovolumen [%]	40,7

Tab. 4.2.4. Prägende trophische Indikatoren (Brettum Scores) und quantitativ wichtige (Biovolums-Anteil > 3 %) Arten - Attersee 2023

ATTERSEE Taxon	Rebecca-	Biovolumen		Bı	ettum	-Index\	werte		Rel. Anteil
		2.000.000.000		<u>5-</u>	8-	15-	30-		7 1111011
März		[mm ³ L ⁻¹]	<=5	8	15	30	60	>60	[%]
Cyclotella bodanica	R0040	0,0023	7	3					5,76%
Cyclotella cyclopuncta	R2195	0,0019	7	3					4,79%
Cyclotella radiosa	R0051	0,0016			1	3	5	1	4,03%
Planktothrix rubescens	R1617	0,0013	1	1	3	4	1		3,40%
Rhodomonas lens	R1407	0,0061							15,42%
Cyclotella sp.	R0053	0,0055							13,98%
Plagioselmis nannoplanctica	R2162	0,0046							11,65%
Fragilaria crotonensis	R0223	0,0037							9,41%
Ceratium hirundinella	R1672	0,0033							8,49%
Asterionella formosa	R0135	0,0019							4,71%
Cyclotella cf. atomus	R0039	0,0014							3,56%
Juni									
Cyclotella cyclopuncta	R2195	0,0489	7	3					32,55%
Cyclotella bodanica	R0040	0,0156	7	3					10,42%
Cyclotella cf. comensis	R0042	0,0065	7	2	1				4,36%
Ceratium hirundinella	R1672	0,0345							22,96%
Plagioselmis nannoplanctica	R2162	0,0149							9,93%
Ceratium cornutum	R1670	0,0046							3,06%
August		,	<u>l</u>						,
Cyclotella cyclopuncta	R2195	0,0253	7	3					22,51%
Gymnodinium uberrimum	R1660	0,0099	1	6	2	1			6,38%
Peridinium willei	R1704	0,0051	1	4	2	1	1	1	3,28%
Ceratium hirundinella	R1672	0,0293	_	•		_			18,88%
Dinobryon divergens	R1073	0,0120							7,75%
Cryptomonas erosa	R1378	0,0117							7,56%
Chrysidiastrum catenatum	R1163	0,0112							7,22%
Dinophyceae indet.	R1708	0,0069							4,48%
Dinobryon sociale	R1083	0,0069							4,44%
· ·	R2162	0,0068							4,39%
Plagioselmis nannoplanctica November	NZIUZ	0,0008							4,33/0
	D0405	0.0050	7	2					0.050/
Cyclotella cyclopuncta	R2195	0,0059	7	3					8,35%
Ceratium hirundinella	R1672	0,0256							36,30%
Asterionella formosa	R0135	0,0110							15,68%
Stephanodiscus alpinus	R0076	0,0045							6,42%
Cryptomonas erosa	R1378	0,0043							6,16%
Picoplankton indet.	R2617	0,0038							5,40%
Plagioselmis nannoplanctica	R2162	0,0024							3,36%

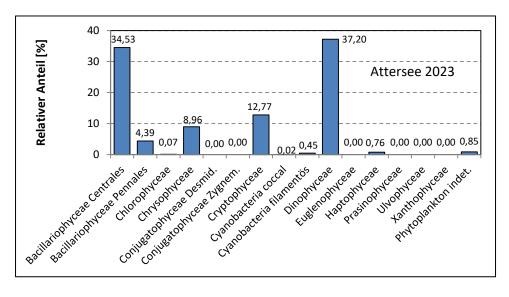

^{*}N.B.:Geringfügige Abweichungen des relativen Anteils einzelner Taxa am Gesamt-Biovolumen[%], im Vergleich zu den Werten in den Prüfprotokollen (4. Quantitative Analyse - Utermöhl-Zählung), ergeben sich aus den in obiger Tabelle bereits abgezogenen Anteilen heterotropher Taxa!

4.3. Grafische Darstellungen


Jahresmittel EQR:

See Jahr		T ERSEI 2023	Ε
IC Seentyp	L-AL3	range	2
Chlorophyll-a [µg L ⁻¹]	0,85		
Biovolumen [mm ³ L ⁻¹]	0,10		
BV für Brettum-Index [mm³ L			
1]	0,04	41%	
Taxa	45		_
Taxa für Brettum-Index	23	51%	
Brettum-Index	5,04		
	Ref.wert	EQR	nEQR
Chlorophyll-a	1,70	2,00	1,00
Biovolumen	0,25	2,41	1,00
Brettum-Index	5,19	0,97	0,97
EQR gesamt	0,983	sehi	r gut


Anteil Biovolumen für die Berechnung des Brettum-Index:



Verteilung Brettum-Scores über die sechs Phosphor-Trophie-Klassen:

Biovolumen Algenklassen [%]:

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Attersee 2023-03-13

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	ATT2023-01
Auftraggeber	Amt der Oberösterreichischen Lande	esregierung	

1. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen								
Gewässername		Atte	rsee		Rechtswert		46	66.214	
Messstellenname					Hochwert		30	5.706	
(GZÜV-)Messstellen_ID					Median		31	1	
Detail WK Name					Trophischer (Grundzustand	oli	igotroph	
Detail WK ID					Höhe Messpu	nkt [m]	46	69	
Z	Zu jewe	eils r	mindestens 4	4 Teri	ninen pro Un	itersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-0				enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Schai		erwirtschaft IGF	
Limnologisch charakteri			punkt **	Frühja	hrszirkulation				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herl	ostzirkulation			
Witterung									
-		vo	or der Probenah	me		während de	r Pro	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
		•				•			
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der			□ ja	□ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ol Pollenflug)	oerflächenfilm,			
Trübung, Art der Trübung **					Thermokline	[m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		12,	4
Algenblüten, Auftriebsfle	ocken		ja 🗆	nein		uphotischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäi	rbung					
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen P			lischprobe ntegrierende P	robe
					wenn Mischpro	be: Angabe der	Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [բւ)							

2. Methodische Angaben zur qualitativen, quantitativen und Diatomeen – Analyse

Qualitative /	Analyse									
Probennummer		ATT202	3-01	Ве	arbeiterIn	Christian	Jersab	ek		
Datum der Analy	se	2023-06	i-19	Pr	obenart	☐ leben	d		x fixiert	
Quantitative	Analys	e								
Probennummer		АТТ	2023-01		Nachfixier tiven Prob	ung der quar e	ntita-	□ja	a x no	ein
BearbeiterIn		Chri	stian Jersabek		wenn ja, v	vann				
Datum der Analy	se	202	3-06-19		Kammerty	/p		Uter	möhl	
Zeitraum zw. Pro und Analyse (Tag		102	Tage		Kammerv	olumen		10 m	nl	
					Ausgegoss der Probe	senes Volume	en	100	ml	
Quantitative Pi	robe: Zähl	strategie		1		A l. l. D	•	1	-1.1	
Proben-Nr.	Kamn	Kammertyp Zählstrategie Diagonalen/Felde			Obj. 4x	Anzahl D Obj. 10x		25x	Obj. 40x	Obj. 60x
ATT2023-01	Utermöh	<u>.</u>	Ganze Kammer		1			23X	Obj. 40x	ODJ. OOX
71112020 01		•	Diagonale/Felder	1		3 D	44	1 F	36 F	
	l		1 0 1 1	1		_	Į			ı
Diatomeenp	robe									
Herkunft										
wenn eigene Dia	tomeenpro	be								
Probennummer		ATT2023	-01_Diat		Volumen					
Präparation		x Glühp	räparat		chemische	Oxidation				
•	srüstun	g des Zä	hlmikroskops und	Dui	rchlichtm	ikroskops	für (die D	iatomeer	า-
Analyse										
Zählmikroskop (Marke/Typ)					Zeiss Tel	aval 3, Jena				
Durchlichtmikr DIC ja/nein)	oskop (M	arke/Typ	, Phasenkontrast ja/ne	in,	Leitz Dia	plan (Ph. ja,	/ DIC j	a)		
Stärkstes Objel (Vergrößerung		che Apert	ur)		100x (oil	, 1,25)				

3. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: ATT2023-01

	ılte uen	ltes nl]	anz 1	·lu- im³]	ı r¹1	nteil
ATT2023-03-13	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolu- men [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	68	100,000	0,680	1963	1,33	3,00
Snowella lacustris	2	14,838	0,135	545	0,07	0,16
Chlorophyceae						
Botryococcus braunii	2	100,000	0,020	7156	0,14	0,32
Elakatothrix genevensis	4	3,010	1,329	106	0,14	0,32
Tetraselmis cordiformis						
Conjugatophyceae						
Cosmarium depressum						
Xanthophyceae						
Tetraedriella jovetii						
Chrysophyceae						
Dinobryon divergens	5	3,010	1,661	230	0,38	0,86
Mallomonas elongata	1	14,838	0,067	1910	0,13	0,29
Mallomonas sp.						
Mallomonas sp.kl.						
Pseudopedinella sp.						
Haptophyceae						
Chrysochromulina parva						
Dinophyta						
Ceratium hirundinella	6	100,000	0,060	55572	3,33	7,49
Glenodinium sp.						
Gymnodinium helveticum	6	14,838	0,404	12902	5,22	11,73
Gymnodinium sp.kl.	2	3,010	0,665	567	0,38	0,85
Gymnodinium uberrimum	2	100,000	0,020	32536	0,65	1,46
Peridinium willei	2	100,000	0,020	55171	1,10	2,48
Cryptophyceae						
Cryptomonas erosa	5	14,838	0,337	2371	0,80	1,80
Plagioselmis nannoplanctica	40	0,953	41,978	109	4,57	10,28
Rhodomonas lens	10	0,953	10,495	577	6,05	13,61
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	224	100,000	2,240	826	1,85	4,16
Aulacoseira subarctica	118	100,000	1,182	402	0,48	1,07
Cyclotella cf. atomus	47	0,953	48,800	29	1,40	3,14
Cyclotella bodanica	5	100,000	0,050	45231	2,26	5,08
Cyclotella cyclopuncta	9	0,953	9,760	193	1,88	4,23
Cyclotella distinguenda	1	14,838	0,049	1411	0,07	0,15
Cyclotella ocellata	5	14,838	0,315	193	0,06	0,14
Cyclotella radiosa	11	14,838	0,752	2106	1,58	3,56
Cyclotella sp.	33	0,953	34,160	161	5,49	12,34
Cymatopleura solea						

Diatoma ehrenbergii						
Discostella glomerata	3	0,953	2,928	132	0,39	0,87
Eunotia sp.						
Fragilaria crotonensis	524	100,000	5,238	706	3,70	8,31
Navicula sp.						
Stephanocostis chantaica	2	0,953	1,952	49	0,10	0,22
Stephanodiscus alpinus	1	14,838	0,049	2910	0,14	0,32
Stephanodiscus neoastraea	1	14,838	0,049	6133	0,30	0,67
Tabellaria flocculosa						
Ulnaria delicatissima var. angustissima	4	100,000	0,040	5394	0,22	0,48
Ulnaria ulna	3	100,000	0,030	9072	0,27	0,61
Gesamt			165,46		44,49	100,00
			10 ³ L ⁻¹		0,044	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

4. Diatomeenanalyse

Laborinterne Probennummer: ATT2023-01_Diato

Taxon	Rebecca-			Größe	enklassen [μm]		
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Aulacoseira subarctica	R0033	32						
Cyclotella cf. atomus	R0039	33						
Cyclotella cyclopuncta	R2195	5	11					
Cyclotella distinguenda	R2196			1	3			
Cyclotella ocellata	R0048		6					
Cyclotella radiosa	R0051			1	14	2		
Cyclotella sp.	R0053	7	37					
Discostella glomerata	R2058	1	4					
Stephanocostis chantaica	R0075	5						
Stephanodiscus alpinus	R0076				2			
Stephanodiscus neoastraea	R2083					3		
Summe Schalen pro Größen	klasse	83	58	2	19	5		
Gesamtsumme Schalen						167		
Anteil centrischer Diatomeen	am Gesamt-	Biovolun	nen			31,8 %		

Anmerkungen:

Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Attersee 2023-06-14

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	ATT2023-02
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Atte	rsee		Rechtswert		46	6.214		
Messstellenname					Hochwert		30	5.706		
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer G	rundzustand	oli	gotroph		
Detail WK ID					Höhe Messpur	nkt [m]	46	9		
_										
					minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benahr	me-	Team, Prüfla							
Datum Probenahme	2023-06	5-14		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		rwirtschaft IG	F	
Limnologisch charakteri	stischer	Zeitp	punkt **	Begin	n der Sommerstagn	ation				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der	rüflabor gezd Sommerstag	ogen gnatior	n, Höhepunkt der Son	nmerstag	nation, Beginn der Herbs	stzirkulation				
Witterung										
		vo	r der Probenah	me		während de	r Prol	benahme		
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, Fä	ärbu	ıng, Schicht	ung						
Hochwassereinfluss (de	r wichtig	sten	Zubringer)							
vor der Probenahme			ja □	nein	während der P			□ ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [I	m]				
Färbung					Sichttiefe/Seco	chi-Tiefe [m]		1	0,7	
Algenblüten, Auftriebsfl	ocken		ja 🗆	nein	Grenze der eu [m] (Kompens	•	ne			
* z.B. hoch, mittel, niedrig	* * mine	eralisc	h, organisch, Calcitfä	rbung	<u> </u>					
Probenahme										
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			lischprobe tegrierende	Probe	
					wenn Mischprob	e: Angabe der	Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [μι										

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Probennummer		ATT202	3-02	BearbeiterIn	Christian Jers	sabek			
Datum der Analy	rse	2023-12	-07	Probenart	☐ lebend		x fixier	t	
Quantitative	e Analys	е							
Probennummer		АТТ	2023-02	Nachfixieru Probe	ing der quantitat	□ ja	x nein		
BearbeiterIn		Chris	stian Jersabek	wenn ja, w	ann				
Datum der Analy	rse	2023	3-12-07	Kammerty)		Utermö	hl	
Zeitraum zw. Pro und Analyse (Tag		179	Tage	Kammervo			10 ml		
				Ausgegosse Probe	enes Volumen de	r	100 ml		
Quantitative P	robe: 7ähl	stratogio							
Quantitative P	ODE. Zalli	sti ategle	Zählstrategie		Anzahl D	iagona	len / Feld	er	
Proben-Nr.	Kamm	nertyp Diagonalen/Felder		Obj. 4x	Obj. 10x		oj. 25x	Obj. 40x	
ATT2023-02	Röhrenka nach Ute	ammer Ganze Kammer		1			•	-	
			Diagonale/Felder		3 D		30 F	18 F	
Diatomeenp Herkunft	robe								
wenn eigene Dia	tomeenpro	be			-				
Probennummer		ATT202	3-02_Diat	Volumen				100 ml	
Präparation		x Glühpi	äparat	☐ chemische Ox	idation				
Optische Au	srüstung	g des Zä	hlmikroskops und	Durchlichtmi	kroskops für	die I	Diatom	een-Analy	se
Zählmikroskop (Marke/Typ)				Zeiss Telo	ıval 3, Jena				
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)			in, Leitz Diap	Leitz Diaplan (ja/ja)					
Stärkstes Objektiv (Vergrößerung, numerische Apertur)					100x (oil, 1,25)				

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: ATT2023-02

ATT2023-06-14	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Chlorophyceae						
Elakatothrix genevensis						
Oocystis sp.						
Xanthophyceae						
Gloeobotrys limneticus						
Chrysophyceae						
Dinobryon crenulatum						
Dinobryon cylindricum						
Dinobryon divergens	32	2,052	15,594	277	4,33	2,67
Haptophyceae						
Chrysochromulina parva	35	0,476	73,462	42	3,08	1,90
Dinophyceae						
Ceratium cornutum	7	100,000	0,070	65669	4,60	2,83
Ceratium hirundinella	56	100,000	0,560	61573	34,48	21,26
Gymnodinium helveticum	21	14,838	1,415	8036	11,37	7,01
Gymnodinium sp.	9	2,052	4,386	407	1,79	1,10
Peridinium umbonatum - Complex	12	14,838	0,809	3290	2,66	1,64
Cryptophyceae						
Cryptomonas erosa + sp.	4	14,838	0,270	2830	0,76	0,47
Cryptomonas sp.						
Plagioselmis nannoplanctica	73	0,476	153,220	97	14,91	9,19
Rhodomonas lens	3	0,476	6,297	375	2,36	1,46
Bacillariophyceae						
Asterionella formosa	16	100,000	0,160	846	0,14	0,08
Cyclotella cf. atomus	12	0,476	25,439	34	0,86	0,53
Cyclotella bodanica	35	100,000	0,350	44713	15,65	9,65
Cyclotella cf. comensis	16	0,476	33,918	193	6,54	4,03
Cyclotella cyclopuncta	343	0,476	720,765	68	48,89	30,14
Cyclotella distinguenda	7	14,838	0,472	1368	0,65	0,40
Cyclotella ocellata	8	14,838	0,519	3343	1,74	1,07
Cyclotella radiosa	20	14,838	1,368	1831	2,51	1,54
Cyclotella sp.	32	0,476	67,837	52	3,54	2,18
Discostella glomerata		, -	,		,	, -
Fragilaria crotonensis	95	100,000	0,952	732	0,70	0,43
Stephanodiscus minutulus		, -	,		, -	, -
Ulnaria delicatissima	3	2,052	1,462	449	0,66	0,40
Gesamt		,	1109,32		162,20	100,00
			10 ³ L ⁻¹		0,162	%
					mm³ L ⁻¹	
					IIIIII" L	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [µg L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschät-

5. Diatomeenanalyse

Laborinterne Probennummer: ATT2023-02_Diato

Taxon	Rebecca-			Größe	enklassen	[µm]					
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37			
Cyclotella cf. atomus	R0039	23									
Cyclotella bodanica	R0040						4	46			
Cyclotella cf. comensis	R0042	1	22	2							
Cyclotella cyclopuncta	R2195	106	18								
Cyclotella distinguenda	R2196			3	9	1					
Cyclotella ocellata	R0048			2	4	10					
Cyclotella radiosa	R0051			3	34	4					
Cyclotella sp.	R0053	45	2								
Summe Schalen pro Größ	enklasse	175	42	10	47	15	4	46			
Gesamtsumme Schalen						339					
					10 = 01						

Gesamtsumme Schalen	339
Anteil centrischer Diatomeen am Gesamt-Biovolumen	49,5 %

Anmerkungen:

Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Attersee 2023-08-08

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	ATT2023-03
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angab	en									
Gewässername		Atter	see		Rechtswert		46	6.214		
Messstellenname					Hochwert		30	5.706		
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer G	rundzustand	oli	gotroph		
Detail WK ID					Höhe Messpui	nkt [m]	46	9		
Z	u jewe	eils n	nindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benah	me-1	ream, Prüfla		1					
Datum Probenahme	2023-0	8-08		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Schai	nt für Wasserwirtschaft IGF , Scharfling			
Limnologisch charakteris	stischer	Zeitp	ounkt **	Höhe	ounkt der Sommerst	tagnation				
* wenn Proben nicht vom selben Pr ** Frühjahrszirkulation, Beginn der			. Höhepunkt der Som	nmerstag	nation. Beginn der Herb	stzirkulation				
Witterung		<u> </u>	,	<u> </u>	, <u>.</u>					
		vo	r der Probenah	me		während de	r Prol	benahme		
Wetter										
Wind										
Niederschlag		Da	tum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ıng, Schicht	ung						
Hochwassereinfluss (der	r wichtig	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der P			□ja	□ nein	
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,6	
Algenblüten, Auftriebsflo	ocken		ja □	nein	Grenze der eu [m] (Kompens	photischen Zo ationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mir	neralisch	n, organisch, Calcitfäl	rbung				I		
Probenahme										
Probenahmetiefe der qua Probe [m; vonbis]	en	0 – 21 m					☐ Mischprobe x integrierende Probe			
					wenn Mischprob	oe: Angabe der	Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [µr		!								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative A	Analyse									
Probennummer		ATT202	3-03	Bearb	eiterIn	Christian Jers	abek			
Datum der Analy	/se	2024-01	-08	Probe	enart	☐ lebend		x fixiert		
						·				
Quantitative	e Analys	е								
Probennummer		АТТ	2023-03		Nachfixierung der quantitativen Probe					x nein
BearbeiterIn		Chris	stian Jersabek	W	enn ja, wa	ınn				
Datum der Analy	/se	202	4-01-08	К	ammertyp	ı		Utermöh	ıl	
Zeitraum zw. Pro und Analyse (Tag		156	Tage	к	ammervol	umen		10 ml		
					usgegosse robe	gegossenes Volumen der be				
Quantitative P	robe: Zähl	strategie								
	7ählstrategie					Anzahl Diago	nale/F	eldern / F	elder	
Proben-Nr.	Kamn	nertyp	Diagonalen/Felder	OI	oj. 4x	Obj. 10x		bj. 25x	Obj. 40x	Obj. 60x
ATT2023-03	Röhrenka nach Ute		Ganze Kammer		1					
			Diagonale/Felder			3 D		21 F	18 F	
Diatomeenp	robe									
Herkunft										
wenn eigene Dia	tomeenpro									
Probennummer		ATT202	3-03_Diat	١	/olumen				100 ml	
Präparation		x Glühpi	räparat	☐ chei	mische Oxi	dation				
Optische Au	srüstun	g des Zä	hlmikroskops und	Durch	lichtmil	kroskops für	die I	Diatome	en-Analy	/se
Zählmikroskop (Marke/Typ)	1				Zeiss Te	laval 3, Jena				
Durchlichtmikr DIC ja/nein)	oskop (Ma	arke/Typ,	Phasenkontrast ja/ne	in,	Leitz Diaplan (ja/ja)					
Stärkstes Obje (Vergrößerung		he Apert	ur)		100x (oil, 1,25)					

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: ATT2023-03

ATT2023-08-08	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [μm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanocapsa elachista						
Chroococcus limneticus						
Planktothrix rubescens	14	100,000	0,140	2826	0,40	0,24
Snowella lacustris						
Chlorophyceae						
Elakatothrix genevensis						
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii						
Chrysophyceae						
Bitrichia chodatii						
Chrysidiastrum catenatum	16	1,436	11,139	1006	11,21	6,73
Dinobryon cylindricum					40.00	
Dinobryon divergens	76	1,436	52,908	227	12,02	7,22
Dinobryon sociale	48	1,436	33,416	206	6,89	4,13
Mallomonas elongata						
Mallomonas sp.						
Pseudopedinella sp.						
Haptophyceae						
Chrysochromulina parva Dinophyceae						
Ceratium cornutum	4	100,000	0,040	62106	2,48	1,49
Ceratium comutam Ceratium hirundinella	58	100,000	0,580	50507	29,29	17,59
Dinophyceae indet.	10	14,838	0,674	10303	6,94	4,17
Glenodinium sp.	10	14,000	0,07 +	10000	0,54	7,17
Gymnodinium helveticum	21	14,838	1,415	8068	11,42	6,86
Gymnodinium sp.	9	1,436	6,265	631	3,95	2,37
Gymnodinium uberrimum	7	100,000	0,070	141423	9,90	5,94
Peridinium sp.		.00,000	3,51.5	0	0,00	0,0 .
Peridinium umbonatum - complex	6	14,838	0,404	3521	1,42	0,85
Peridinium willei + sp.	8	100,000	0,080	63587	5,09	3,05
Cryptophyceae		•	,		,	,
Cryptomonas erosa	8	1,436	5,569	2106	11,73	7,04
Cryptomonas marssonii	3	1,436	2,088	359	0,75	0,45
Cryptomonas sp.						
Plagioselmis nannoplanctica	36	0,476	75,561	90	6,81	4,09
Rhodomonas lens	2	0,476	4,198	362	1,52	0,91
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	32	100,000	0,320	810	0,26	0,16
Aulacoseira subarctica						

Cyclotella bodanica	5	100,000	0,050	32596	1,63	0,98
Cyclotella cyclopuncta gr.	17	0,476	35,786	269	9,63	5,78
Cyclotella cyclopuncta kl.	307	0,476	644,155	39	25,28	15,18
Cyclotella distinguenda	5	14,838	0,323	2086	0,67	0,41
Cyclotella intermedia	4	14,838	0,259	8331	2,16	1,29
Cyclotella ocellata	5	14,838	0,323	2042	0,66	0,40
Cyclotella radiosa	0	14,838	0,032	1831	0,06	0,04
Cyclotella sp.	14	0,476	28,629	68	1,94	1,17
Cymbella lanceolata						
Cymbella sp.						
Discostella glomerata	3	0,476	7,157	68	0,49	0,29
Eunotia sp.						
Fragilaria crotonensis						
Nitzschia sp.						
Stephanodiscus alpinus	10	14,838	0,679	2866	1,95	1,17
Gesamt			912,26		166,55	100,00
			10 ³ L ⁻¹		0,167	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: ATT2023-03_Diato

Taxon	Rebecca-		Größenklassen [μm]								
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37			
Cyclotella bodanica	R0040						2	7			
Cyclotella cyclopuncta	R2195	277	18	5							
Cyclotella distinguenda	R2196				9						
Cyclotella intermedia	R0040					7					
Cyclotella ocellata	R0048				8	1					
Cyclotella radiosa	R0051				2						
Cyclotella sp.	R0053	21	3								
Discostella glomerata	R2058	5									
Stephanodiscus alpinus	R0076				14	5					
Summe Schalen pro Größ	enklasse	303	21	5	33	13	2	7			
Gesamtsumme Schalen						384					
Anteil centrischer Diatome	en am Gesamt-	Biovolun	nen		26,7 %						

Anmerkungen:

Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Attersee 2023-11-15

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	ATT2023-04
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

		_									
Allgemeine Angal	oen										
Gewässername		Atte	rsee		Rechtswert		46	66.214			
Messstellenname					Hochwert		30	05.706			
(GZÜV-)Messstellen_ID					Median		3′	1			
Detail WK Name					Trophischer (Grundzustand	ol	igotroph			
Detail WK ID					Höhe Messpu	nkt [m]	46	69			
2	Zu jewe	ils r	mindestens 4	4 Ter	minen pro Un	tersuchung	sjah	r:			
Datum, Uhrzeit, Pro	benahi	me-	Team, Prüfla	abor							
Datum Probenahme	2023-11				enahme-Team						
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IG	iF		
Limnologisch charakteri			punkt **	Begin	n der Herbstzirkula	tion					
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstag	nation, Beginn der Herk	ostzirkulation					
Witterung											
vor der Probena			or der Probenah	me		während de	r Pro	Probenahme			
Wetter											
Wind											
Niederschlag		Da	atum:								
Lufttemperatur [°C]											
Wolkenbedeckung [%]											
Hydrographie, Trüb	ung, F	ärbı	ung, Schicht	ung							
Hochwassereinfluss (de	r wichtig	sten	Zubringer)								
vor der Probenahme			ja □	nein	während der l			□ ja	□ nein		
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ol Pollenflug)	perflächenfilm,					
Trübung, Art der Trübung **					Thermokline	[m]					
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		:	8,2		
Algenblüten, Auftriebsfl	ocken		ja □	nein		uphotischen Zo sationsebene)	ne				
* z.B. hoch, mittel, niedrig	* * min	eralisc	ch, organisch, Calcitfä	rbung							
Probenahme											
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probenahme der quantitativen Probe x integrierende Probe			Probe			
1					wenn Mischprobe: Angabe der Tiefenstufen						
Maschenweite für die qu Phytoplankton-Probe [µl					·						
	_										

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative A	Analyse										
Probennummer		ATT202	3-04	Bea	rbeiterIn	Christian Jer	sabek				
Datum der Analy	se	2024-01	-09	Pro	benart	☐ lebend		x fixiert			
Quantitative	Analyse										
Probennummer		ATT	2023-04		Nachfixieru Probe	ing der quantitat	iven	□ ja	□ ja x nein		
BearbeiterIn		Chris	stian Jersabek		wenn ja, w	ann					
Datum der Analy			Kammerty)		Utermöh	ıl				
Zeitraum zw. Probenahme und Analyse 60 Tage					Kammervo	lumen		10 ml			
					Ausgegosse Probe	enes Volumen de	100 ml				
Quantitative Pr	obe: Zählst	rategie	Ī								
Proben-Nr.	Kamme	mertyp Zählstrategie Diagonalen/Felder			Oh: Av			alen / Felde	1	Obj. 60x	
	Röhrenkan	nmer			Obj. 4x	Obj. 10x	-	bj. 25x	Obj. 40x	Obj. oox	
ATT2023-04	nach Uterr		Ganze Kammer		1						
			Diagonale/Felder			3 D		34 F	10, 36 F		
Diatomeenp	robe										
Herkunft											
wenn eigene Dia	tomeenprob	?									
Probennummer		ATT202	3-04_Diat		Volumen				100 ml		
Präparation		x Glühpr	räparat	□ cł	nemische Ox	idation					
Optische Au	srüstung	des Zä	hlmikroskops und	Dur	chlichtmi	kroskops fü	r die	Diatome	en-Analy	se .	
Zählmikroskop	(Marke/Ty	p)			Zeiss Tela	ıval 3, Jena					
Durchlichtmikr DIC ja/nein)	oskop (Mar	ke/Typ,	Phasenkontrast ja/ne	in,	Leitz Diap	olan (ja/ja)					
Stärkstes Objek (Vergrößerung,		e Apert	ur)		100x (oil,	1,25)					

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: ATT2023-04

ATT2023-11-15	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanocapsa elachista						
Chroococcus limneticus						
Lemmermanniella sp.						
Planktothrix rubescens	14	100,000	0,140	2042	0,29	0,39
Snowella lacustris						
Chlorophyceae						
Coelastrum sp.						
Elakatothrix genevensis						
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii						
Planktosphaeria gelatinosa						
Pseudosphaerocystis lacustris	20	100,000	0,200	180	0,04	0,05
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum						
Chrysophyceae						
Chrysidiastrum catenatum	4	2,326	1,720	981	1,69	2,31
Dinobryon bavaricum	2	2,326	0,860	189	0,16	0,22
Dinobryon crenulatum						
Dinobryon cylindricum	3	2,326	1,290	410	0,53	0,73
Dinobryon divergens	5	2,326	2,150	202	0,43	0,59
Dinobryon sertularia						
Dinobryon sociale	2	2,326	0,860	230	0,20	0,27
Mallomonas sp.						
Pseudopedinella sp.						
Uroglena sp.	12	0,953	12,593	160	2,02	2,77
Haptophyceae						
Chrysochromulina parva	7	0,953	7,346	42	0,31	0,42
Dinophyceae						
Ceratium hirundinella	42	100,000	0,420	60853	25,56	35,02
Glenodinium sp.						
Gymnodinium helveticum	32	100,000	0,320	8068	2,58	3,54
Gymnodinium sp.	7	2,326	3,010	584	1,76	2,41
Cryptophyceae						
Cryptomonas erosa	36	14,838	2,426	1789	4,34	5,95
Plagioselmis nannoplanctica	25	0,953	26,236	90	2,36	3,24
Rhodomonas lens						
Bacillariophyceae						
Asterionella formosa	1520	100,000	15,200	726	11,04	15,12

Aulacoseira subarctica	4	14,838	0,293	261	0,08	0,10
Cyclotella cf. atomus	20	0,953	21,094	34	0,71	0,97
Cyclotella cyclopuncta	13	0,953	14,063	418	5,88	8,05
Cyclotella distinguenda	4	14,838	0,283	1712	0,48	0,66
Cyclotella intermedia	1	14,838	0,047	10816	0,51	0,70
Cyclotella ocellata	1	14,838	0,094	1286	0,12	0,17
Cyclotella radiosa						
Cyclotella sp.	13	0,953	14,063	39	0,55	0,76
Diatoma ehrenbergii						
Discostella glomerata	7	0,953	7,031	117	0,82	1,13
Discostella stelligera	4	0,953	4,219	314	1,32	1,82
Fragilaria crotonensis						
Stephanocostis chantaica	3	0,953	2,813	42	0,12	0,16
Stephanodiscus alpinus	29	14,838	1,934	2337	4,52	6,19
Ulnaria delicatissima	31	14,838	2,089	315	0,66	0,90
Ulnaria delicatissima var. angustissima	2	100,000	0,020	5394	0,11	0,15
Picoplankton < 5 μm						
Picoplankton indet.	35	0,265	132,231	29	3,80	5,21
Gesamt			275,05		72,98	100,00
			10 ³ L ⁻¹		0,073	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: ATT2023-04_Diato

Taxon	Rebecca-			Größe	enklassen	[µm]		
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Aulacoseira subarctica	R0033	5						
Cyclotella cf. atomus	R0039	23						
Cyclotella cyclopuncta	R2195		9	20				
Cyclotella distinguenda	R2196				6	2		
Cyclotella intermedia	R0040					2		
Cyclotella ocellata	R0048			1	2			
Cyclotella sp.	R0053	21						
Discostella glomerata	R2058	2	10					
Discostella stelligera	R2060							
Stephanocostis chantaica	R0075		5	2				
Stephanodiscus alpinus	R0076			3	30	4		
Summe Schalen pro Größer	nklasse	51	24	26	38	8		
-								
Gesamtsumme Schalen						147		
Anteil centrischer Diatomeer	n am Gesamt-	Biovolun	nen			20,7 %		

Anmerkungen:

Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

5. HALLSTÄTTER SEE

5.1. Gutachten Phytoplankton

Ergebnisübersicht für das Untersuchungsjahr 2023 sowie 3-Jahresmittel

Ergebnisübersicht der Untersuchungstermine eines Jahres

sowie 3-Jahresmittel

Datum	Chlorophyll-a [µgL ⁻¹]	Biovolumen* [mm³L-1]	Brettum-Index
08.03.2023	0,20	0,04	3,11
19.06.2023	1,60	0,11	4,85
16.08.2023	0,60	0,12	4,89
13.11.2023	0,60	0,06	3,92

^{*}Abz. heterotrophe Arten

Jahr		ophyll-a nittelwert)	Biovolu (Jahresmit			m-Index mittelwert)	Gesamtbewertung (gewichteter MW)	Ökologische Zustandsklasse
	[µgL ⁻¹]	nEQR	[mm ³ L ⁻¹]	nEQR	Index	nEQR	nEQR	
2021	1,25	1,00	0,10	1,00	3,43	0,59	0,797	gut
2022	0,80	1,00	0,07	1,00	4,28	0,78	0,890	sehr gut
2023	0,75	1,00	0,08	1,00	4,19	0,76	0,880	sehr gut
		3	3 Jahresmitt	el				sehr gut

BEURTEILUNG

Qualitatselement Phytopiankton im Untersuchungsjahr 2023	<u>senr gut</u>
Qualitätselement Phytoplankton im 3-Jahresmittel (2021-2023)	sehr aut

Angaben zum See, zur Untersuchungsstelle und Probenahmen

See und Untersuchungsste	elle								
Gewässername	Hallstä	tter See		Höhe M	esspunkt [m]		508		
Messstellenname				Fläche [l	km²]		8,6		
(GZÜV-)Messstellen_ID				Maxima	le Länge [km]		7,5		
Rechtswert	474.92	9		Maxima	le Breite [km]		1,4		
Hochwert	268.24	9		Maxima	le Tiefe [m]		125		
Median	31			Mittlere	Tiefe [m]		65		
Detail WK Name				Gesamt	volumen [Mio	o. m³] 558,1			
Detail WK ID				Mittlerer Abfluss (MQ) [m³/s]			35,4		
IC-Seentyp (Interkalibrierung)	L-AL3			Abfluss			Traun		
AT-Seentyp (National)	D1			Wassererneuerungszeit / theoretisch [Jahre]		0,5			
Trophischer Grundzustand	oligotro	oph		Durchm	ischung / Schi	chtungstyp	Holo- /	o- / dimiktisch	
Zugrunde liegenden Prüfb	erichte				-				
		1.	Termin	2.	Termin	3. Termin		4. Termin	
Nummern der zugrunde liegenden Frichte	rüfbe-	20	23/01	2023/02		2023/03		2023/04	
Probenahmetermine der zugrunde l de Prüfberichte	iegen-	2023-03-08		2023-06-19		2023-08-16		2023-11-13	

1. Ergebnisübersicht – Zusammenfassung der 4 Beprobungstermine

Chlorophyll-a Konzentration	μgL ⁻¹	EQR	nEQR
Referenzwert	1,50	1,00	1,00
Grenze sehr gut/gut	2,14	0,70	0,80
Grenze gut/mäßig	3,75	0,40	0,60
Jahresmittel	0,75	2,00	1,00
Biovolumen	mm³L ⁻¹	EQR	nEQR
Referenzwert	0,20	1,00	1,00
Grenze sehr gut/gut	0,33	0,60	0,80
Grenze gut/mäßig	0,80	0,25	0,60
Jahresmittel	0,08	2,46	1,00
Brettum-Index	Wert	EQR	nEQR
Referenzwert	5,29	1,00	1,00
Grenze sehr gut/gut	4,37	0,83	0,80
Grenze gut/mäßig	3,46	0,65	0,60
Jahresmittel	4,19	0,79	0,76

Normierte EQR gesamt	0,880
Ökologische Zustandsklasse	sehr gut

5.2. Ergebnistabellen

Tab. 5.2.1. Zusammenfassung quantitative und qualitative Phytoplanktonproben

HALLSTÄTTER SEE 2023	Algenfrischgewicht [μg l ⁻¹]								
TAXON	08.03.	19.06.	16.08.	13.11.	Mittel				
Cyanobacteria									
Planktothrix rubescens	1,51	0	0,13	0,24	0,47				
Chlorophyceae									
Elakatothrix cf. genevensis				0					
Koliella sp.				0					
Planctonema lauterbornii				0					
Planktosphaeria gelatinosa			0						
Sphaerocystis schroeteri			0						
Tetraselmis cordiformis			0						
Conjugatophyceae									
Cosmarium depressum				0					
Spirogyra sp.				0					
Staurastrum cingulum		0,26	0,19	0,85	0,33				
Euglenophyceae		,	,	,	•				
Trachelomonas volvocina				0,17	0,04				
Chrysophyceae									
Bitrichia chodatii			0						
Dinobryon divergens	٥	57,63	0	0	14,41				
Mallomonas akrokomos			0	0,16					
Mallomonas sp.		0	0	0,87	0,22				
Haptophyceae									
Chrysochromulina parva				0					
Dinophyceae									
Ceratium hirundinella	2,24		21,14	19,00					
Glenodinium sp.			1,37	1,00	0,59				
Gymnodinium helveticum		5,32	3,29	5,22	3,46				
Gymnodinium sp.	1,47	1,28	0	0	0,69				
Cryptophyceae									
Cryptomonas erosa	1,96	2,29	22,52	20,42	11,80				
Cryptomonas marssonii			0	0,71	0,18				
Plagioselmis nannoplanctica	11,89	18,75	31,59	14,78	19,25				
Rhodomonas lens	5,07	13,36	4,20		5,65				
Bacillariophyceae									
Achnanthes sp.				0					
Asterionella formosa	2,35	0,40	0,29	0,54	0,89				
Cyclotella cf. atomus	0,37				0,09				
Cyclotella bodanica		1,94			0,48				
Cyclotella cf. comensis			0,80		0,20				
Cyclotella cyclopuncta	0,26		1,67		0,48				
Cyclotella intermedia	0,52		17,70	1,19	4,85				

Anzahl Taxa insgesamt					50
Anzahl Taxa / Termin	21	17	29	27	
Relativer Anteil Chlorophyll-a [%]	0,59	1,50	0,57	0,88	0,89
Chlorophyll-a [µg/l]	0,2	1,6	0,6	0,6	0,75
$1000 \mu g/l = 1 \text{ mm}^3/l$					
abz. heterotrophe (mm³/l)	0,034	0,101	0,103	0,063	0,075
Biovolumen tot. (mm³/l)	0,034	0,106	0,106	0,068	0,079
Frischgewicht tot. (µg/l)	33,6	106,4	105,8	68,2	78,5
Picoplankton indet.		4,34			1,08
Picoplankton < 5 µm					
Ulnaria ulna		·	·	0,10	0,02
Ulnaria delicatissima var. angustissima	0,26	0,97	0,11	0	0,33
Ulnaria delicatissima	0,33	0		0,30	0,16
Ulnaria capitata	,	0	,		,
Stephanodiscus neoastraea	3,80	0	8,21		3,00
Stephanodiscus minutulus	0,47		-, -		0,12
Stephanodiscus alpinus	0,60		0,20		0,20
Stephanocostis chantaica	0,11		.,	1,00	0,03
Fragilaria crotonensis			4,12	1,09	1,30
Discostella glomerata	3,03		0,69		0,17
Diatoma ehrenbergii	5,65				1,41
Cymatopleura solea Cymbella sp.	0,29				0,07
Cyclotella sp.	0.20	5,15	_	3,00	2,04 0,07
Cyclotella cf. planctonica	0,05	E 4 E	0,28	2.00	0,08
Cyclotella ocellata	0.05		0 00		0.00

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst summarisch in Biovolumen [mm^3 L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm^3 /l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch qualitative Ergebnisse eingeflossen: das Auftreten von Arten in nicht quantifizierbarer Dichte ist durch ^ogekennzeichnet.

Tab. 5.2.2. Zusammenfassung Algenklassen der quantitativen Phytoplanktonproben

HALLSTÄTTER SEE 2023		Algenfri	schgewich	nt [µg l ⁻¹]	
Algenklasse	08.03.	19.06.	16.08.	13.11.	Mittel
Bacillariophyceae Centrales	6,17	7,09	29,54	4,19	11,75
Bacillariophyceae Pennales	8,88	1,37	4,51	2,03	4,20
Chlorophyceae					
Chrysophyceae		57,63		1,03	14,66
Conjugatophyceae Desmid.		0,26	0,19	0,85	0,33
Conjugatophyceae Zygnem.					
Cryptophyceae	18,92	34,40	58,31	35,91	36,89
Cyanobacteria coccal					
Cyanobacteria filamentös	1,51		0,13	0,24	0,47
Dinophyceae	3,71	6,59	25,80	25,23	15,33
Euglenophyceae				0,17	0,04
Haptophyceae					
Prasinophyceae					
Ulvophyceae					
Xanthophyceae					
Phytoplankton indet.		4,34			1,08
Frischgewicht tot. (µg/l)	39,2	111,7	118,5	69,6	84,8
Biovolumen tot. (mm³/l)	0,039	0,112	0,118	0,070	0,085
abz. heterotrophe (mm³/l)	0,034	0,101	0,103	0,063	0,075
$1000 \mu g/l = 1 \text{ mm}^3/l$					

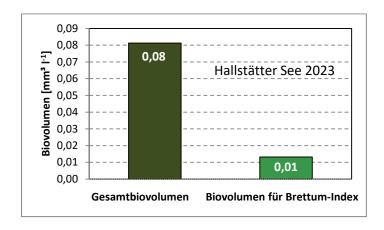
Tab. 5.2.3. Brettum Index:Werte der einzelnen Trophie-Klassen, für 2023 im Hallstätter See quantifizierte Taxa

HALLSTÄTTER SEE 2023	Rebecca-ID	Brettum-Indexwerte der einzelnen Trophieklassen					
Taxon		<=5	5-8	8-15	15-30	30-60	>60
Asterionella formosa	R0135						
Ceratium hirundinella	R1672						
Cryptomonas erosa	R1378						
Cryptomonas marssonii	R1382						
Cyclotella bodanica	R0040	7	3				
Cyclotella cf. atomus	R0039						
Cyclotella cf. comensis	R0042	7	2	1			
Cyclotella cf. planctonica	R2570						
Cyclotella cyclopuncta	R2195	7	3				
Cyclotella intermedia	R0040	7	3				
Cyclotella sp.	R0053						
Cymatopleura solea	R0162						
Diatoma ehrenbergii	R0184				3	7	
Dinobryon divergens	R1073						
Discostella glomerata	R2058	6	3	1			
Fragilaria crotonensis	R0223						
Glenodinium sp.	R1642		2	5	3		
Gymnodinium sp.	R1654	1	5	2	1	1	
Mallomonas akrokomos	R1097			2	4	3	1
Mallomonas sp.	R1109						
Picoplankton indet.	R2617						
Plagioselmis nannoplanctica	R2162						
Planktothrix rubescens	R1617	1	1	3	4	1	
Rhodomonas lens	R1407						
Staurastrum cingulum	R1283				1	8	1
Stephanocostis chantaica	R0075						
Stephanodiscus alpinus	R0076						
Stephanodiscus minutulus	R0082				3	4	3
Stephanodiscus neoastraea	R0083		1	2	4	3	
Trachelomonas volvocina	R1776			1	4	5	
Ulnaria delicatissima	R2173						
Ulnaria delicatissima var. angustissima	R2174	2	3	3	2		
Ulnaria ulna	R2175						

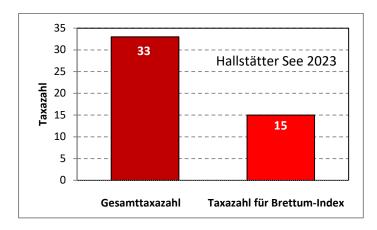
Relativer Anteil quantifizierter Taxa für Brettum Index [%]	45,5
Relativer Anteil des Biovolumen der eingestuften Taxa am Gesamtbiovolumen [%]	16,3

Tab. 5.2.4. Prägende trophische Indikatoren (Brettum Scores) und quantitativ wichtige (Biovolums-Anteil > 3 %) Arten - Hallstätter See 2023

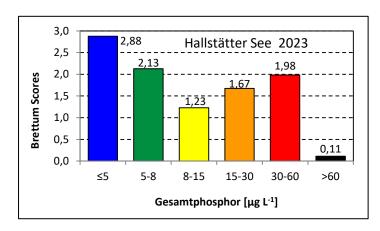
HALLSTÄTTER SEE Taxon	Rebecca- ID	Biovolumen		Bı	ettum	-Indexv	verte		Rel. Anteil
März		[mm ³ L ⁻¹]	<=5	5- 8	8- 15	15- 30	30- 60	>60	[%]
Diatoma ehrenbergii	R0184	0,0057				3	7		14,42%
Stephanodiscus neoastraea gr.	R0083	0,0026		1	2	4	3		9,70%
Planktothrix rubescens	R1617	0,0015	1	1	3	4	1		3,85%
Gymnodinium sp.	R1654	0,0015	1	5	2	1	1		3,75%
Plagioselmis nannoplanctica	R2162	0,0119							30,35%
Rhodomonas lens	R1407	0,0051							12,93%
Asterionella formosa	R0135	0,0023							5,99%
Ceratium hirundinella	R1672	0,0022							5,72%
Cryptomonas erosa	R1378	0,0020							5,01%
Juni									
Dinobryon divergens	R1073	0,0576							54,17%
Plagioselmis nannoplanctica	R2162	0,0188							17,63%
Rhodomonas lens	R1407	0,0134							12,56%
Cyclotella sp.	R0053	0,0029							4,84%
Picoplankton indet.	R2617	0,0043							4,08%
August									
Cyclotella intermedia	R0040	0,0177	7	3					15,37%
Stephanodiscus neoastraea	R0083	0,0071		1	2	4	3		7,13%
Plagioselmis nannoplanctica	R2162	0,0316							27,42%
Cryptomonas erosa	R1378	0,0225							19,55%
Ceratium hirundinella	R1672	0,0211							18,35%
Rhodomonas lens	R1407	0,0042							3,64%
Fragilaria crotonensis	R0223	0,0041							3,57%
November									
Cryptomonas erosa	R1378	0,0204							31,69%
Ceratium hirundinella	R1672	0,0190							29,50%
Plagioselmis nannoplanctica	R2162	0,0148							22,94%
Cyclotella sp.	R0053	0,0030							4,66%

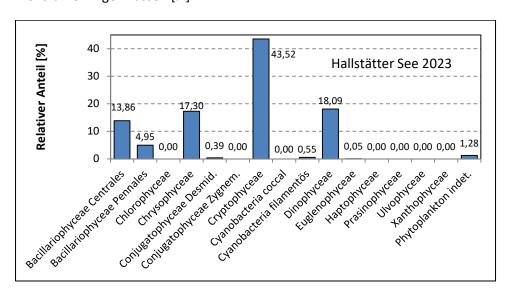

^{*}N.B.:Geringfügige Abweichungen des relativen Anteils einzelner Taxa am Gesamt-Biovolumen[%], im Vergleich zu den Werten in den Prüfprotokollen (4. Quantitative Analyse - Utermöhl-Zählung), ergeben sich aus den in obiger Tabelle bereits abgezogenen Anteilen heterotropher Taxa!

5.3. Grafische Darstellungen


Jahresmittel EQR:

See	HALLS	STÄTTER SEE				
Jahr		2023				
IC Seentyp	L-AL3	range	1			
		-				
Chlorophyll-a [µg L ⁻¹]	0,75					
Biovolumen [mm ³ L ⁻¹]	0,08					
BV für Brettum-Index [mm³ L						
1]	0,01	16%				
Taxa	33					
Taxa für Brettum-Index	15	45%				
Brettum-Index	4,19					
	Ref.wert	EQR	nEQR			
Chlorophyll-a	1,50	2,00	1,00			
Biovolumen	0,20	2,46	1,00			
Brettum-Index	5,29	0,79	0,76			
EQR gesamt	0,880	seh	r gut			


Anteil Biovolumen für die Berechnung des Brettum-Index:



Verteilung Brettum-Scores über die sechs Phosphor-Trophie-Klassen:

Biovolumen Algenklassen [%]:

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Hallstätter See 2023-03-08

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	HST2023-01		
Auftraggeber	Amt der Oberösterreichischen Land	esregierung			

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen								
Gewässername		Halls	stätter See		Rechtswert		47	4.929	
Messstellenname					Hochwert		26	268.249	
(GZÜV-)Messstellen_ID				Median					
Detail WK Name					Trophischer (Grundzustand	oli	igotroph	
Detail WK ID					Höhe Messpunkt [m]		50)8	
Z	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	itersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-0	3-08	·	Probenahme-Team					
Jhrzeit Probenahme		Prüfl	abor *	Bundesamt für Mondsee, Schai		erwirtschaft IGF			
Limnologisch charakteri			punkt **	Frühjd	ahrszirkulation				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herl	ostzirkulation			
Witterung									
-		vo	or der Probenah	me		während de	r Pro	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
		•				•			
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtiç	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der			□ ja	□ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ol Pollenflug)	oerflächenfilm,			
Trübung, Art der Trübung **					Thermokline	[m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		10	5
Algenblüten, Auftriebsfle	ocken		ja □	nein		uphotischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfär	rbung	•				
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen P			x Mischprobe □ integrierende Probe	
					wenn Mischprobe: Angabe der Tiefenstufen				
Maschenweite für die qu Phytoplankton-Probe [μι					-				

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative A	Analyse											
Probennummer		HST2023	-01	Bearbeite	rln	Christian Jers	abek					
Datum der Analy	se	2023-06	-20	Probenari	t	☐ lebend						
Quantitative	Analyse)										
Probennummer		нѕта	2023-01		Nachfixierung der quantitativen Probe				x nein			
BearbeiterIn		Chris	stian Jersabek	wenn	ja, wa	ann						
Datum der Analy	se	202	3-06-20	Kamn	nertyp)		Utermöh	nl			
Zeitraum zw. Pro und Analyse	benahme	108	Tage	Kamn	nervol	umen		10 ml				
				Ausge Probe	_	nes Volumen de	r	100 ml				
Quantitative Pr	obe: Zähls	trategie	1	T								
Proben-Nr.	Kamm	ertvp	Zählstrategie			Anzahl Diagonalen / Obj. 4x Obj. 10x Obj. 25				T		
			Diagonalen/Felder		х	Obj. 10x	0	bj. 25x	Obj. 40x	Obj. 60x		
HST2023-01	Utermöhl		Ganze Kammer	1								
			Diagonale/Felder			3 D		30 F	18 F			
Diatomeenp	robe											
Herkunft												
wenn eigene Dia	tomeenprol	be										
Probennummer		HST2023	-01_Diat	Volu	men							
Präparation		x Glühpi	räparat	☐ che	mische	Oxidation						
Optische Aus	srüstung	des Zä	hlmikroskops und	Durchlich	ntmil	kroskops für	die	Diatome	een-Analy	se		
Zählmikroskop (Marke/Typ)				Zeis	s Tela	val 3, Jena						
Durchlichtmikro DIC ja/nein)	oskop (Ma	rke/Typ,	Phasenkontrast ja/ne	in, Leitz	Leitz Diaplan (ja/ja)							
Stärkstes Objek (Vergrößerung,		he Apert	ur)	100	100x (oil, 1,25)							

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: HST2023-01

HST2023-03-08	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	66	100,000	0,660	2289	1,51	3,85
Chrysophyceae						
Dinobryon divergens						
Dinophyceae						
Ceratium hirundinella	4	100,000	0,040	56089	2,24	5,72
Gymnodinium sp.	2	2,052	0,975	1509	1,47	3,75
Cryptophyceae						
Cryptomonas erosa	15	14,838	1,011	1943	1,96	5,01
Plagioselmis nannoplanctica	52	0,476	109,143	109	11,89	30,35
Rhodomonas lens	6	0,476	12,593	402	5,07	12,93
Bacillariophyceae						
Asterionella formosa	336	100,000	3,360	698	2,35	5,99
Cyclotella cf. atomus	4	0,476	8,081	45	0,37	0,94
Cyclotella cyclopuncta	1	0,476	1,763	146	0,26	0,66
Cyclotella intermedia gr.	2	100,000	0,020	20659	0,41	1,05
Cyclotella intermedia kl.	0,3	14,838	0,019	5589	0,11	0,27
Cyclotella cf. planctonica	0,2	14,838	0,014	3343	0,05	0,12
Cymatopleura solea	1	100,000	0,010	29094	0,29	0,74
Cymbella sp.						
Diatoma ehrenbergii	14	14,838	0,944	5990	5,65	14,42
Stephanocostis chantaica	1	0,476	1,616	65	0,11	0,27
Stephanodiscus alpinus	2	14,838	0,146	4109	0,60	1,53
Stephanodiscus minutulus	2	0,476	3,232	144	0,47	1,19
Stephanodiscus neoastraea gr.	3	14,838	0,202	12861	2,60	6,64
Stephanodiscus neoastraea kl.	4	14,838	0,292	4109	1,20	3,07
Ulnaria delicatissima	5	14,838	0,337	976	0,33	0,84
Ulnaria delicatissima var. angustissima	5	100,000	0,050	5161	0,26	0,66
Gesamt			144,51		39,19	100,00
			10 ³ L ⁻¹		0,039	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: HST2023-01_Diato

Taxon	Rebecca-			Größ	enklassen	nklassen [µm]					
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37			
Cyclotella cf. atomus	R0039	6									
Cyclotella cf. planctonica	R2570					1					
Cyclotella cyclopuncta	R2195		3								
Cyclotella intermedia	R0040				1	2	3	1			
Stephanocostis chantaica	R0075	3									
Stephanodiscus alpinus	R0076				2	5					
Stephanodiscus minutulus	R0082	1	2								
Stephanodiscus neoastraea	R0083					8	4				
Summe Schalen pro Größen	klasse	10	5		3	16	7	1			
Gesamtsumme Schalen			42								
Anteil centrischer Diatomeen	am Gesamt-B	iovolum	ovolumen 15,7 %								

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Hallstätter See 2023-06-19

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	HST2023-02		
Auftraggeber	Amt der Oberösterreichischen La	andesregierung			

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Halls	stätter See		Rechtswert		47	4.929		
Messstellenname					Hochwert		26	268.249		
(GZÜV-)Messstellen_ID					Median		31	31		
Detail WK Name					Trophischer (Grundzustand	OI	ligotroph		
Detail WK ID					Höhe Messpu	nkt [m]	50)8		
Z	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor						
Datum Probenahme	2023-0		,		enahme-Team					
Uhrzeit Probenahme	it Probenahme		Prüfl	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IGF			
Limnologisch charakteri			punkt **	Begir	nn der Sommersta	agnation				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstag	nation, Beginn der Herl	ostzirkulation				
Witterung										
			vor der Probenahme			während der Probenahme				
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
						-				
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der			□ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ol Pollenflug)	oerflächenfilm,				
Trübung, Art der Trübung **					Thermokline	[m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		7,9)	
Algenblüten, Auftriebsfl	ocken		ja □	nein		uphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäl	rbung				•		
Probenahme										
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m					x Mischprobe		
					wenn Mischpro					
Maschenweite für die qu Phytoplankton-Probe [μι)								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen – Analyse

Qualitative A	Analyse									
Probennummer		HST2023	3-02	Bea	arbeiterIn	Christian Jers	abek			
Datum der Analy	se	2023-12	-08	Pro	benart	☐ lebend		x fixiert		
Quantitative	Analyse)								
Probennummer		нѕт	2023-02		Nachfixieru Probe	ng der quantitati	iven	□ ja		x nein
BearbeiterIn		Chri	stian Jersabek	wenn ja, wann						
Datum der Analy		202	3-12-08		Kammertyp)		Utermöh	l	
Zeitraum zw. Pro und Analyse	benahme	175	Tage		Kammervo	lumen		10 ml		
					Ausgegosse Probe	enes Volumen de	ř	100 ml		
Quantitative Pr	obe: Zähls	trategie		1						
Proben-Nr.	Kamm	ertyp	Zählstrategie Diagonalen/Felder					len / Felde		1
	Röhrenka	mmor	<u> </u>		Obj. 4x	Obj. 10x	O	bj. 25x	Obj. 40x	
HST2023-02	nach Uter		Ganze Kammer		1					
			Diagonale/Felder			3 D	18 F		10,18 F	
			-							•
Diatomeenp	robe									
Herkunft										
wenn eigene Dia	omeenprol	be								
Probennummer		HST2023	3-02_Diat		Volumen					
Präparation		x Glühp	räparat	□ ch	emische Oxio	lation				
Optische Aus	srüstung	des Zä	hlmikroskops und	Dur	chlichtmi	kroskops für	die I	Diatome	en-Analy	'se
Zählmikroskop (Marke/Typ)					Zeiss Telaval 3, Jena					
Durchlichtmikro DIC ja/nein)	oskop (Ma	rke/Typ	, Phasenkontrast ja/ne	in,	Leitz Diaplan (ja/ja)					
Stärkstes Objek (Vergrößerung,		he Apert	:ur)		100x (oil, 1,25)					

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: HST2023-02

HST2023-06-19	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Chlorophyceae						
Planktosphaeria gelatinosa						
Conjugatophyceae						
Staurastrum cingulum	3	100,000	0,030	8811	0,26	0,24
Chrysophyceae						
Dinobryon divergens	305	1,231	247,717	233	57,63	51,60
Mallomonas sp.						
Dinophyceae						
Gymnodinium helveticum	5	14,838	0,337	15774	5,32	4,76
Gymnodinium sp.	3	1,231	2,437	524	1,28	1,14
Cryptophyceae						
Cryptomonas erosa	17	14,838	1,146	2002	2,29	2,05
Plagioselmis nannoplanctica	203	0,476	426,078	44	18,75	16,79
Rhodomonas lens	18	0,476	37,780	354	13,36	11,96
Bacillariophyceae						
Asterionella formosa	88	100,000	0,880	460	0,40	0,36
Cyclotella bodanica	8	100,000	0,080	24239	1,94	1,74
Cyclotella sp. gr.	12	14,838	0,809	3577	2,89	2,59
Cyclotella sp. kl.	10	0,476	20,989	108	2,26	2,02
Stephanodiscus neoastraea gr.						
Ulnaria capitata						
Ulnaria delicatissima						
Ulnaria delicatissima var. angustissima	28	100,000	0,280	3457	0,97	0,87
Picoplankton < 5 μm						
Picoplankton indet.	61	0,265	230,460	19	4,34	3,89
Gesamt			969,02		111,70	100,00
		10 ³ L ⁻¹		0,112	%	
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: HST2023-02_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im Juni bei 6,3 % - und damit unter den lt. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Hallstätter See 2023-08-16

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	HST2023-03
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angaben Gewässername Hallstätter See Rechtswert 474.929 Messstellenname Hochwert 268.249 (GZÜV-)Messstellen_ID Median 31 Detail WK Name Trophischer Grundzustand oligotroph Detail WK ID Höhe Messpunkt [m] 508							
Messstellenname Hochwert 268.249 (GZÜV-)Messstellen_ID Median 31 Detail WK Name Trophischer Grundzustand oligotroph							
(GZÜV-)Messstellen_ID Median 31 Detail WK Name Trophischer Grundzustand oligotroph							
Detail WK Name Trophischer Grundzustand oligotroph							
Detail WK ID Höhe Messpunkt [m] 508							
Zu jeweils mindestens 4 Terminen pro Untersuchungsjahr:							
Datum, Uhrzeit, Probenahme-Team, Prüflabor							
Datum Probenahme 2023-08-16 Probenahme-Team							
Uhrzeit Probenahme Prüflabor * Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling							
Limnologisch charakteristischer Zeitpunkt ** Höhepunkt der Sommerstagnation							
* wenn Proben nicht vom selben Prüflabor gezogen ** Frühjahrszirkulation, Beginn der Sommerstagnation, Höhepunkt der Sommerstagnation, Beginn der Herbstzirkulation							
Witterung							
vor der Probenahme während der Probenahme	während der Probenahme						
Wetter							
Wind							
Niederschlag Datum:							
Lufttemperatur [°C]							
Wolkenbedeckung [%]							
Hydrographie, Trübung, Färbung, Schichtung							
Hochwassereinfluss (der wichtigsten Zubringer)							
vor der Probenahme □ ja □ nein □ während der Probenahme □ ja	□ nein						
Wasserstand aktuell (zumindest Sonstiges (Oberflächenfilm, Pollenflug)							
Trübung, Art der Trübung ** Thermokline [m]							
Färbung Sichttiefe/Secchi-Tiefe [m] 5,8							
Algenblüten, Auftriebsflocken ☐ ja ☐ nein ☐ Grenze der euphotischen Zone [m] (Kompensationsebene)							
* z.B. hoch, mittel, niedrig							
Probenahme							
Probenahmetiefe der quantitativen Probe [m; vonbis] Art der Probenahme der quantitativen Probe □ integrierende Pro	be						
wenn Mischprobe: Angabe der Tiefenstufen							
Maschenweite für die qualitative Phytoplankton-Probe [µm]							

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Analyse										
Probennummer		HST2023	-03	Ве	arbeiterIn	Christian Jo	ersabek			
Datum der Analyse 2024-01-09 Prol					obenart	☐ lebend		x fixiert		
Quantitative	Analyse	е								
Probennummer HST2023-03				Nachfixieru Probe	ng der quantit	ativen	□ ja		x nein	
BearbeiterIn		Chri	stian Jersabek		wenn ja, w	ann				
Datum der Analy	se	2024	1-01-09		Kammerty)		Utermöh	ıl	
Zeitraum zw. Pro und Analyse	benahme	149	Tage		Kammervo	umen		10 ml		
					Ausgegosse Probe	nes Volumen	der	100 ml		
Quantitative Pr	obe: Zähl:	strategie	1	ı						
Proben-Nr.	Kamm	ertyp	Zählstrategie Diagonalen/Felder		Oh: 4	Anzahl Diagonalen / Feld				
	Röhrenka	mmor	Diagonalen/Feider	1	Obj. 4x	Obj. 10x	0	bj. 25x	Obj. 40x	
HST2023-03	nach Ute		Ganze Kammer		1					
			Diagonale/Felder			3 D		30 F	21 F	
Diatomeenp	robe									
Herkunft										
wenn eigene Diat	tomeenpro	be								
Probennummer		HST2023	-03_Diat		Volumen					
Präparation		x Glühp	räparat [□ ch	emische Oxid	lation				
Optische Aus	srüstung	g des Zä	hlmikroskops und	Dur	chlichtmi	kroskops f	ür die	Diatome	en-Analy	se
Zählmikroskop (Marke/Typ)					Zeiss Telaval 3, Jena					
	oskop (Ma	arke/Typ	, Phasenkontrast ja/nei	in,	Leitz Diaplan (ja/ja)					
Stärkstes Objek (Vergrößerung,		he Apert	cur)		100x (oil, 1,25)					
					_					

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: HST2023-03

HST2023-08-16	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg 1 ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	6	100,000	0,060	2096	0,13	0,11
Chlorophyceae						
Planktosphaeria gelatinosa						
Sphaerocystis schroeteri						
Tetraselmis cordiformis						
Conjugatophyceae						
Staurastrum cingulum	2	100,000	0,020	9570	0,19	0,16
Chrysophyceae						
Bitrichia chodatii						
Dinobryon divergens						
Mallomonas akrokomos						
Mallomonas sp.						
Dinophyceae						
Ceratium hirundinella	38	100,000	0,380	55623	21,14	17,84
Glenodinium sp.	2	2,052	0,975	1407	1,37	1,16
Gymnodinium helveticum	6	14,838	0,404	8144	3,29	2,78
Gymnodinium sp.						
Cryptophyceae						
Cryptomonas erosa	148	14,838	9,974	2258	22,52	19,01
Cryptomonas marssonii						
Plagioselmis nannoplanctica	225	0,556	404,789	78	31,59	26,66
Rhodomonas lens	6	0,556	10,794	389	4,20	3,54
Bacillariophyceae						
Asterionella formosa	64	100,000	0,640	448	0,29	0,24
Cyclotella intermedia	34	14,838	2,291	7726	17,70	14,94
Cyclotella cf. comensis	3	0,556	6,045	132	0,80	0,68
Cyclotella cyclopuncta	6	0,556	10,363	161	1,67	1,41
Cyclotella ocellata						
Cyclotella cf. planctonica	1	14,838	0,040	6893	0,28	0,24
Cyclotella sp.		_	_	_	_	_
Discostella glomerata	3	0,556	5,181	132	0,69	0,58
Fragilaria crotonensis	163	29,970	5,432	758	4,12	3,48
Stephanodiscus alpinus	1	14,838	0,054	3635	0,20	0,17
Stephanodiscus neoastraea gr.	10	14,838	0,674	10598	7,14	6,03
Stephanodiscus neoastraea kl.	4	14,838	0,243	4411	1,07	0,90
Ulnaria delicatissima var. angustissima	2	100,000	0,020	5400	0,11	0,09
Gesamt			458,38		118,48	100,00
			10 ³ L ⁻¹		0,118	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: HST2023-03_Diato

Taxon	Rebecca-	Größenklassen [µm]							
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37	
Cyclotella cf. comensis	R0042		5						
Cyclotella cf. planctonica	R2570					2			
Cyclotella cyclopuncta	R2195	2	12	1					
Cyclotella intermedia	R0040				2	26	8	4	
Discostella glomerata	R2058		5						
Stephanodiscus alpinus	R0076				2	5			
Stephanodiscus neoastraea	R0083				2	10	7		
Summe Schalen pro Größen	2	22	1	6	43	15	4		
Gesamtsumme Schalen					93				
Anteil centrischer Diatomeen		24,9 %							

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Hallstätter See 2023-11-13

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	HST2023-04
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Halls	stätter See		Rechtswert		47	4.929		
Messstellenname					Hochwert		268.249			
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name				Trophischer C	Grundzustand	oli	gotroph			
Detail WK ID					Höhe Messpu	nkt [m]	50	8		
	_									
2	Zu jewe	ils r	mindestens 4	4 Ter	minen pro Un	tersuchung	sjahı	r:		
Datum, Uhrzeit, Pro	benahi	me-	Team, Prüfla	bor						
Datum Probenahme	2023-11	1-13		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		rwirtschaf	t IGF	
Limnologisch charakteri	stischer	Zeit	punkt **	Begir	nn der Herbstzirku	ılation				
* wenn Proben nicht vom selben F ** Frühjahrszirkulation, Beginn der	rüflabor geze	ogen		nmerstag	nation. Beginn der Herb	ostzirkulation				
Witterung		<u> </u>	,							
			vor der Probenahme				während der Probenahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbı	ung, Schicht	ung						
Hochwassereinfluss (de	r wichtig	sten	Zubringer)							
vor der Probenahme	_		ja □	nein	während der I	Probenahme		□ja	□ ne	ein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Oberflächenfilm, Pollenflug)					
Trübung, Art der Trübung **					Thermokline [[m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			7,1	
Algenblüten, Auftriebsfl	ocken		ja 🗆	nein	Grenze der euphotischen Zone [m] (Kompensationsebene)		ne			
* z.B. hoch, mittel, niedrig	* * min	eralisc	ch, organisch, Calcitfäl	rbung						
Probenahme										
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr					
					wenn Mischpro	be: Angabe de	Tiefe	enstufen		
Maschenweite für die qu										

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Analyse											
Probennummer		HST2023-04 Bea				Christian Jers	Christian Jersabek				
Datum der Analyse 2024-01-09 Prob				benart	☐ lebend		x fixiert				
Quantitative	Analyse	2									
Probennummer HST2023-04			Nachfixieru Probe	ing der quantitati	ven	□ ja		x nein			
BearbeiterIn		Chris	stian Jersabek		wenn ja, wa	ann					
Datum der Analy	se	2024	1-01-09		Kammertyp)		Utermöh	I		
Zeitraum zw. Pro und Analyse	benahme	62 T	age		Kammervol	lumen		10 ml			
					Ausgegosse Probe	enes Volumen der	•	100 ml			
		•									
Quantitative Pr	obe: Zähl	trategie	ı								
Proben-Nr.	Kamm	ertyp	Zählstrategie				alen / Felder				
			Diagonalen/Felder	- (Obj. 4x	Obj. 10x	0	bj. 25x	Obj. 40x		
HST2023-04	Röhrenka nach Utei		Ganze Kammer		1						
			Diagonale/Felder			3 D		30 F	20 F		
				•						•	
Diatomeenp	robe										
Herkunft											
wenn eigene Dia	tomeenproi	be									
Probennummer		HST2023	-04_Diat		Volumen						
Präparation		x Glühpı	räparat	□ che	mische Oxio	dation					
Optische Au	srüstung	des Zä	hlmikroskops und	Durc	hlichtmi	kroskops für	die	Diatome	en-Analy	/se	
Zählmikroskop (Marke/Typ)					Zeiss Telaval 3, Jena						
	oskop (Ma	rke/Typ,	Phasenkontrast ja/ne	in,	Leitz Diaplan (ja/ja)						
Stärkstes Objek (Vergrößerung,		he Apert	ur)		100x (oil, 1,25)						

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: HST2023-04

HST2023-11-13	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	10	100,000	0,100	2375	0,24	0,34
Chlorophyceae						
Elakatothrix cf. genevensis						
Koliella sp.						
Planctonema lauterbornii						
Conjugatophyceae						
Cosmarium depressum						
Spirogyra sp.						
Staurastrum cingulum	10	100,000	0,100	8495	0,85	1,22
Euglenophyceae						
Trachelomonas volvocina	1	14,838	0,067	2574	0,17	0,25
Chrysophyceae						
Dinobryon divergens						
Mallomonas akrokomos	2	0,529	3,778	42	0,16	0,23
Mallomonas sp.	2	2,052	0,975	891	0,87	1,25
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	31	100,000	0,310	61298	19,00	27,29
Glenodinium sp.	2	2,052	0,975	1030	1,00	1,44
Gymnodinium helveticum	6	14,838	0,404	12921	5,22	7,50
Gymnodinium sp.						
Cryptophyceae						
Cryptomonas erosa	139	14,838	9,368	2179	20,42	29,31
Cryptomonas marssonii	2	2,052	0,975	729	0,71	1,02
Plagioselmis nannoplanctica	74	0,529	139,787	106	14,78	21,22
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	104	100,000	1,040	519	0,54	0,77
Cyclotella intermedia/bodanica	8	100,000	0,080	14837	1,19	1,70
Cyclotella sp. kl.	12	0,529	22,668	132	3,00	4,31
Fragilaria crotonensis	50	29,970	1,668	656	1,09	1,57
Ulnaria delicatissima	4	14,838	0,270	1106	0,30	0,43
Ulnaria delicatissima var. angustissima		, -	, -		, -	, -
Ulnaria ulna	1	100,000	0,010	9647	0,10	0,14
Gesamt		22,220	182,57		69,64	100,00
			10 ³ L ⁻¹		0,070	%
			10 L		•	70
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: HST2023-04_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im November bei 6,0 % - und damit deutlich unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

6. IRRSEE

6.1. Gutachten Phytoplankton

Ergebnisübersicht für das Untersuchungsjahr 2023 sowie 3-Jahresmittel

Ergebnisübersicht der Untersuchungstermine eines Jahres

sowie 3-Jahresmittel

Datum	Chlorophyll-a [µgL ⁻¹]	Biovolumen* [mm³L-1]	Brettum-Index
01.03.2023	2,30	0,73	4,90
12.06.2023	1,40	0,32	4,51
10.08.2023	1,40	0,21	3,81
06.11.2023	2,60	0,48	4,64

^{*}Abz. heterotrophe Arten

Jahr		ophyll-a nittelwert)	Biovolu (Jahresmi		Brettum-Index (Jahresmittelwert)				Gesamtbewertung (gewichteter MW)	Ökologische Zustandsklasse
	[µgL ⁻¹]	nEQR	[mm ³ L ⁻¹]	nEQR	Index	nEQR	nEQR			
2021	2,60	1,00	0,61	0,99	3,64	0,84	0,92	sehr gut		
2022	1,93	1,00	0,48	1,00	3,96	0,96	0,98	sehr gut		
2023	1,93	1,00	0,43	1,00	4,46	1,00	1,00	sehr gut		
		:	3 Jahresmitt	el			0,966	sehr gut		

BEURTEILUNG

Qualitätselement Phytoplankton im Untersuchungsjahr 2023	sehr gut
Qualitätselement Phytoplankton im 3-Jahresmittel (2021-2023)	sehr aut

1. Angaben zum See, zur Untersuchungsstelle und Probenahmen

See und Untersuchungsste	elle					
Gewässername	Irrsee		Höhe Messpunkt [m]		553	
Messstellenname			Fläche [km²]		3,6	
(GZÜV-)Messstellen_ID			Maximale Länge [km]		4,7	
Rechtswert	447.88	5	Maximale Breite [km]		1,0	
Hochwert	309.45	4	Maximale Tiefe [m]		32	
Median	31		Mittlere Tiefe [m]		15	
Detail WK Name			Gesamtvolumen [Mio	esamtvolumen [Mio. m³] 53,1		
Detail WK ID			Mittlerer Abfluss (MQ) [m³/s]	1,3	
IC-Seentyp (Interkalibrierung)	L-AL4		Abfluss		Zeller Ache	
AT-Seentyp (National)	B2		Wassererneuerungszeit / theoretisch [Jahre]		1,3	
Trophischer Grundzustand	oligotro	oph	Durchmischung / Schi	chtungstyp	Holo- / dimiktisch	
Zugrunde liegenden Prüfb	erichte		2. Termin	2 Tayunin		4. Termin
		1. Termin	Z. Termin	3. Termin		4. Termin
Nummern der zugrunde liegenden Frichte	Prüfbe-	2023/01	2023/02	2023/03	3	2023/04
Probenahmetermine der zugrunde liegen- de Prüfberichte		2023-03-01	2023-06-12	2023-06-12 2023-08-10		2023-11-06

2. Ergebnisübersicht – Zusammenfassung der 4 Beprobungstermine

Chlorophyll-a Konzentration	μgL ⁻¹	EQR	nEQR
Referenzwert	3,00	1,00	1,00
Grenze sehr gut/gut	4,00	0,75	0,80
Grenze gut/mäßig	7,32	0,41	0,60
Jahresmittel	1,93	1,56	1,00
Biovolumen	mm³L ⁻¹	EQR	nEQR
Referenzwert	0,60	1,00	1,00
Grenze sehr gut/gut	0,94	0,64	0,80
Grenze gut/mäßig	2,31	0,26	0,60
Jahresmittel	0,43	1,39	1,00
Brettum-Index	Wert	EQR	nEQR
Referenzwert	4,07	1,00	1,00
Grenze sehr gut/gut	3,54	0,87	0,80
Grenze gut/mäßig	3,00	0,74	0,60
Jahresmittel	4,46	1,10	1,00
Normierte EQR ges	amt	1,00	
Ökologische Zustands	klasse	sehr gut	

6.2. Ergebnistabellen

Tab. 6.2.1. Zusammenfassung quantitative und qualitative Phytoplanktonproben

	Algenfrischgewicht [µg l ⁻¹]						
TAXON	01.03.	12.06.	10.08.	06.11.	Mittel		
Cyanobacteria							
Aphanocapsa elachista			0				
Chroococcus limneticus			0,77	75,49	19,06		
Chroococcus minutus				0			
Planktothrix rubescens	6,21	10,73	9,80	7,53	8,57		
Pseudanabaena catenata			0				
Radiocystis geminata			0				
Snowella lacustris	83,71	0	4,21	11,30	24,80		
Chlorophyceae							
Botryococcus braunii	1,52	0,80	2,85	1,13	1,57		
Coenochloris fottii		0					
Elakatothrix genevensis	0	0		0			
Oocystis sp.	0	2,93	0	0	0,73		
Pediastrum boryanum		0	0	0			
Planctonema lauterbornii			1,54	0,39	0,48		
Planktosphaeria gelatinosa		0	0	0	•		
Pseudosphaerocystis lacustris				0,25	0,06		
Scenedesmus linearis			0	0	-,		
Scenedesmus sp.	0	0					
Tetrastrum triangulare	0		0				
Conjugatophyceae							
Cosmarium depressum	0	3,27	2,08		1,34		
Teilingia granulata		-,	0		1,21		
Euglenophyceae							
Trachelomonas sp.				0,72	0,18		
Trachelomonas volvocina	1,81	1,09	2,06	-,	1,24		
Xanthophyceae	,-	,	,		,		
Gloeobotrys limneticus	2,58	0	21,31	16,49	10,09		
Tetraedriella jovetii	0,31	0	_ :, :		0,08		
Chrysophyceae	5,01						
Bitrichia chodatii	0		0				
Chrysidiastrum catenatum			0,18		0,04		
Dinobryon divergens	0,23	22,08	5,74	16,57	11,15		
Dinobryon sertularia	5,26	,55	٥,. ١	0	, . 3		
Dinobryon sociale	0,34	0	8,37	0	2,18		
Kephyrion/Pseudokephyrion sp.	-,		2,	0	_,		
Mallomonas caudata	30,77				7,69		
Mallomonas elongata	1,00	0			0,25		
Mallomonas sp.	0	0	0	0	-,		
Uroglena sp.		2,51	11,40		3,48		
Haptophyceae		,	,		-,-3		
Chrysochromulina parva	1,48		2,68		1,04		

Dinonbyooso			0		
Dinophyceae Ceratium hirundinella	7 22	20.44	EC 00	72.04	42.02
	7,22	39,14	56,02	72,94	43,83
Glenodinium sp.	0.00	24.20		10.44	40.00
Gymnodinium helveticum	9,89	21,29	6,83	12,41	12,60
Gymnodinium sp.		Ü	3,38	0.40.00	0,85
Gymnodinium uberrimum	0.00	44.44	2,27	242,09	61,09
Peridinium sp.	2,09	11,11	3,22	1,51	4,48
Peridinium umbonatum - Complex		3,86			0,96
Cryptophyceae					
Cryptomonas erosa	12,85	0,68	12,17	8,04	8,43
Cryptomonas marssonii	1,36	13,63	11,91	1,75	7,16
Cryptomonas rostratiformis	0	0			
Cryptomonas sp.	0	0			
Plagioselmis nannoplanctica	8,76	11,72	27,86	11,05	14,85
Rhodomonas lens	5,76		0	0	1,44
Bacillariophyceae					
Achnanthes sp.		0	0		
Amphora ovalis	0				
Asterionella formosa	41,53	3,23	0,19	0,45	11,35
Cyclotella cf. atomus		0			
Cyclotella comensis	20,45	2,75			5,80
Cyclotella cyclopuncta	322,67	101,57			106,06
Cyclotella kuetzingiana	72,54				18,14
Cyclotella ocellata		41,99			10,50
Cyclotella radiosa	26,50	13,52			10,00
Cyclotella sp.	٥	5,48	17,36	5,95	7,20
Eunotia sp.	0	0			
Fragilaria crotonensis	69,06	20,04	0,78	6,03	23,98
Nitzschia sp.		0	0		
Stephanodiscus alpinus	0,48				0,12
Stephanodiscus minutulus		5,14			1,28
Tabellaria flocculosa	0	0			
Ulnaria delicatissima var. angustissima	4,89	0,85	0,14		1,47
Frischgewicht tot. (µg/l)	736,0	339,4	215,1	492,1	445,7
Biovolumen tot. (mm³/l)	0,736	0,339	0,215	0,492	0,446
abz. heterotrophe (mm³/l)	0,726	0,318	0,208	0,480	0,433
$1000 \mu g/l = 1 \text{ mm}^3/l$					
Chlorophyll-a [µg/l]	2,3	1,4	1,4	2,6	1,93
Relativer Anteil Chlorophyll-a [%]	0,31	0,41	0,65	0,53	0,48
	•				
Anzahl Taxa / Termin	39	42	41	30	
Anzahl Taxa insgesamt					65
Anzani Taka mayesanii					05

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst summarisch in Biovolumen [mm^3 L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm^3 /l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch qualitative Ergebnisse eingeflossen: das Auftreten von Arten in nicht quantifizierbarer Dichte ist durch ^ogekennzeichnet.

Tab. 6.2.2. Zusammenfassung Algenklassen der quantitativen Phytoplanktonproben

IRRSEE 2023	Algenfrischgewicht [μg l ⁻¹]							
Algenklasse	01.03.	12.06.	10.08.	06.11.	Mittel			
Bacillariophyceae Centrales	442,64	170,45	17,36	5,95	159,10			
Bacillariophyceae Pennales	115,48	24,12	1,11	6,48	36,80			
Chlorophyceae	1,52	3,73	4,40	1,77	2,85			
Chrysophyceae	32,33	24,60	25,69	16,57	24,80			
Conjugatophyceae Desmid.		3,27	2,08		1,34			
Conjugatophyceae Zygnem.								
Cryptophyceae	28,72	26,03	51,94	20,83	31,88			
Cyanobacteria coccal	83,71		4,98	86,79	43,87			
Cyanobacteria filamentös	6,21	10,73	9,80	7,53	8,57			
Dinophyceae	19,20	75,40	71,72	328,95	123,82			
Euglenophyceae	1,81	1,09	2,06	0,72	1,42			
Haptophyceae	1,48		2,68		1,04			
Prasinophyceae								
Ulvophyceae								
Xanthophyceae	2,89		21,31	16,49	10,17			
Picoplankton indet.								
Frischgewicht tot. (µg/l)	736,0	339,4	215,1	492,1	445,7			
Biovolumen tot. (mm³/l)	0,736	0,339	0,215	0,492	0,446			
abz. heterotrophe (mm³/l)	0,726	0,318	0,208	0,480	0,433			
$1000 \mu g/l = 1 \text{ mm}^3/l$								

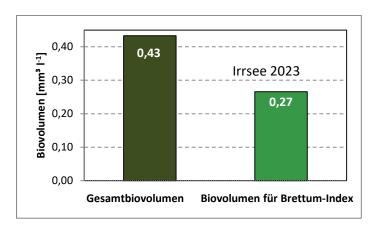
Tab. 6.2.3. Brettum Index:Werte der einzelnen Trophie-Klassen, für 2023 im Irrsee quantifizierte Taxa

IRRSEE 2023	Rebecca-ID	Brettum-Indexwerte der einzelnen Trophieklassen						
Taxon		<=5	5-8	8-15	15-30	30-60	>60	
Asterionella formosa	R0135							
Botryococcus braunii	R0493	5	2	2	1			
Ceratium hirundinella	R1672							
Chroococcus limneticus	R1438	4	2	2	1	1		
Chrysidiastrum catenatum	R1163							
Chrysochromulina parva	R1818			1	3	4	2	
Cosmarium depressum	R1209	2	2	3	1	1	1	
Cryptomonas erosa	R1378							
Cryptomonas marssonii	R1382							
Cyclotella comensis	R0042	7	2	1				
Cyclotella cyclopuncta	R2195	7	3					
Cyclotella kuetzingiana	R0046							
Cyclotella ocellata	R0048		1	1	4	3	1	
Cyclotella radiosa	R0051			1	3	5	1	
Cyclotella sp.	R0053							
Dinobryon divergens	R1073							
Dinobryon sociale	R1083							
Fragilaria crotonensis	R0223							
Gloeobotrys limneticus	R1840							
Gymnodinium sp.	R1654	1	5	2	1	1		
Gymnodinium uberrimum	R1660	1	6	2	1			
Mallomonas caudata	R1100			1	4	5		
Mallomonas elongata	R1103							
Oocystis sp.	R0705							
Peridinium sp.	R1699							
Peridinium umbonatum - Complex	R1903	7	2		1			
Plagioselmis nannoplanctica	R2162							
Planctonema lauterbornii	R0919							
Planktothrix rubescens	R1617	1	1	3	4	1		
Pseudosphaerocystis lacustris	R0736			2	5	2	1	
Rhodomonas lens	R1407							
Snowella lacustris	R1510		1	4	4	1		
Stephanodiscus alpinus	R0076							
Stephanodiscus minutulus	R0082				3	4	3	
Tetraëdriella jovetii	R1854							
Trachelomonas sp.	R1773							
Trachelomonas volvocina	R1776			1	4	5		
Ulnaria delicatissima var. angustissima	R2174	2	3	3	2			
Uroglena sp.	R1151		3	3	3	1		

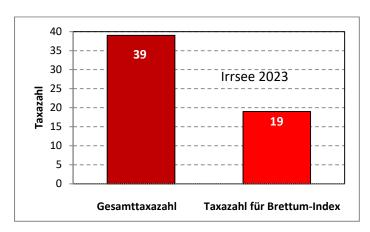
Relativer Anteil quantifizierter Taxa für Brettum Index [%]	48,7
Relativer Anteil des Biovolumen der eingestuften Taxa am Gesamtbiovolumen [%]	61,3

Tab. 6.2.4. Prägende trophische Indikatoren (Brettum Scores) und quantitativ wichtige (Biovolums-Anteil > 3 %) Arten - Irrsee 2023

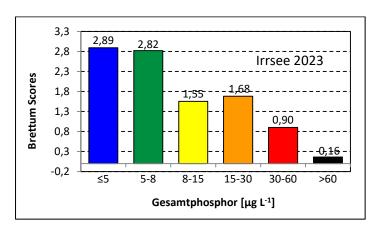
IRRSEE Taxon	Rebecca-	Biovolumen		D	rottum	-Indexv	vorto		Rel. Anteil
- uxon	טו	Biovolumen		5-	8-	15-	30-		Anten
März		[mm ³ L ⁻¹]	<=5	8	15	30	60	>60	[%]
Cyclotella cyclopuncta	R2195	0,3227	7	3					44,44%
Snowella lacustris	R1510	0,0837		1	4	4	1		11,53%
Mallomonas caudata	R1100	0,0308			1	4	5		4,24%
Cyclotella radiosa	R0051	0,0265			1	3	5	1	3,65%
Cyclotella kuetzingiana	R0046	0,0441							9,99%
Fragilaria crotonensis	R0223	0,0691							9,51%
Asterionella formosa	R0135	0,0415							5,72%
Juni									
Cyclotella cyclopuncta	R2195	0,1016	7	3					31,93%
Cyclotella ocellata	R0048	0,0420		1	1	4	3	1	13,20%
Cyclotella radiosa	R0051	0,0135			1	3	5	1	4,25%
Planktothrix rubescens	R1617	0,0107	1	1	3	4	1		3,37%
Ceratium hirundinella	R1672	0,0391							12,30%
Dinobryon divergens	R1073	0,0221							6,94%
Fragilaria crotonensis	R0223	0,0200							6,30%
Cryptomonas marssonii	R1382	0,0136							4,29%
Plagioselmis nannoplanctica	R2162	0,0117							3,69%
Peridinium sp.	R1699	0,0111							3,49%
August		0,0111							0,.070
Uroglena sp.	R1151	0,0114		3	3	3	1		5,47%
Planktothrix rubescens	R1617	0,0098	1	1	3	4	1		4,71%
Ceratium hirundinella	R1672	0,0560	•			•	•		26,90%
Plagioselmis nannoplanctica	R2162	0,0300							13,38%
Gloeobotrys limneticus	R1840	0,0213							10,23%
Cyclotella sp.	R0053	0,0101							8,33%
Cryptomonas erosa	R1378	0,0122							5,84%
Cryptomonas marssonii	R1382	0,0119							5,72%
Dinobryon sociale	R1083	0,0084							4,02%
November		3,000							.,0270
Gymnodinium uberrimum	R1660	0,2421	1	6	2	1			50,47%
Chroococcus limneticus	R1438	0,0755	4	2	2	1	1		15,74%
Ceratium hirundinella	R1672	0,0729	•			<u> </u>	<u> </u>		15,21%
Dinobryon divergens	R1073	0,0166							3,45%
Gloeobotrys limneticus	R1840	0,0165							3,44%

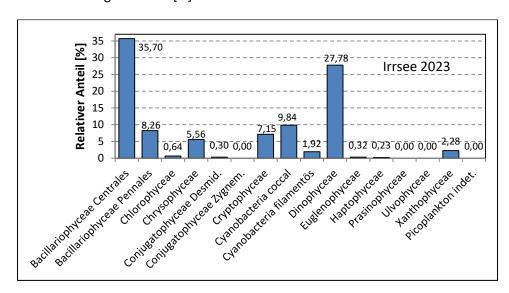

^{*}N.B.:Geringfügige Abweichungen des relativen Anteils einzelner Taxa am Gesamt-Biovolumen[%], im Vergleich zu den Werten in den Prüfprotokollen (4. Quantitative Analyse - Utermöhl-Zählung), ergeben sich aus den in obiger Tabelle bereits abgezogenen Anteilen heterotropher Taxa!

6.3. Grafische Darstellungen


Jahresmittel EQR:

See	IRRSEE				
Jahr	2023				
IC Seentyp	L-AL4	range	2		
Chlorophyll-a [µg L ⁻¹]	1,93				
Biovolumen [mm ³ L ⁻¹]	0,43				
BV für Brettum-Index [mm³ L					
1]	0,27	61%			
Taxa	39				
Taxa für Brettum-Index	19	49%			
Brettum-Index	4,46				
	Ref.wert	EQR	nEQR		
Chlorophyll-a	3,00	1,56	1,00		
Biovolumen	0,60	1,39	1,00		
Brettum-Index	4,07	1,10	1,00		
EQR gesamt	1,000	sehr gut			


Anteil Biovolumen für die Berechnung des Brettum-Index:


Anteil Taxa-Anzahl für die Berechnung des Brettum-Index:

Verteilung Brettum-Scores über die sechs Phosphor-Trophie-Klassen:

Biovolumen Algenklassen [%]:

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Irrsee 2023-03-01

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	IRR2023-01
Auftraggeber	Amt der Oberösterreichischen Land	lesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Irrsee			Rechtswert		44	7.885		
Messstellenname					Hochwert		30	9.454		
(GZÜV-)Messstellen_ID					Median		31	31		
Detail WK Name					Trophischer G	rundzustand	OI	Oligotroph		
Detail WK ID					Höhe Messpur	nkt [m]	55	3		
_										
	zu jewe	eils mi	ndestens 4	4 Terr	ninen pro Un	tersuchung	sjan	r:		
Datum, Uhrzeit, Pro	benah	me-Te	eam, Prüfla	bor						
Datum Probenahme	2023-0	3-01		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Schai		rwirtschaft I	GF .	
Limnologisch charakteristischer Ze			nkt **	Frühja	hrszirkulation					
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			löhepunkt der Son	nmerstagr	nation, Beginn der Herb	stzirkulation				
Witterung			•		<u>-</u>					
vo			der Probenah	me		während de	r Prol	benahme		
Wetter										
Wind										
Niederschlag		Datu	ım:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbun	g, Schicht	ung						
Hochwassereinfluss (de	r wichtig	ısten Zı	ubringer)							
vor der Probenahme		□ ja	ı 🗆	nein	während der P	Probenahme		□ ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,0	
Algenblüten, Auftriebsfl	ocken	□ ja	n 🗆	nein	Grenze der eu [m] (Kompens	photischen Zo ationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mir	neralisch, d	organisch, Calcitfä	rbung						
Probenahme										
Probenahmetiefe der quantitativen Probe [m; vonbis]		en	0 = 21 m					x Mischprobe □ integrierende Probe		
				wenn Mischprok	oe: Angabe der	Tiefe	enstufen			
Maschenweite für die qu Phytoplankton-Probe [μι		!								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Ana	lyse									
Probennummer	IRI	R2023-	01	Be	arbeiterIn	Christian Jer	sabek			
Datum der Analyse	20	23-06	-23	Pr	obenart	☐ lebend		x fixiert		
Quantitative A	Analyse	Э								
Probennummer		IRR	2023-01		Nachfixieru Probe	ing der quantitat	iven	□ ja	x nein	
BearbeiterIn		Chri	stian Jersabek		wenn ja, w	ann				
Datum der Analyse		2023	3-06-23		Kammerty)		Utermöh	l	
Zeitraum zw. Probenahme und Analyse					Kammervo	lumen		10 ml		
					Ausgegosse Probe	enes Volumen de	er	100 ml		
Quantitative Probe	: Zählstra	tegie	T	1						
Proben-Nr.	Kamme	rtyp	Zählstrategie			T -	len / Felde		1	
100000000			Diagonalen/Felder		Obj. 4x	Obj. 10x	0	bj. 25x	Obj. 40x	
IRR2023-01	Utermöh	11	Ganze Kammer		1	2.0	_	4 20 F	40.5	
			Diagonale/Felder		3 D	3 D	2	1,36 F	18 F	
Diatomeenprob	e									
Herkunft										
wenn eigene Diatom	eenprobe									
Probennummer	IRI	R2023-	01_Diat		Volumen					
Präparation	x	Glühpr	äparat		chemische	Oxidation				
Optische Ausrü	stung d	es Zä	hlmikroskops und	Dur	chlichtmi	kroskops füi	r die	Diatome	en-Analy	se
Zählmikroskop (Marke/Typ)					Zeiss Tela	ıval 3, Jena				
	op (Marke	е/Тур,	Phasenkontrast ja/ne	in,	Leitz Diap	olan (ja/ja)				
Stärkstes Objektiv (Vergrößerung, nu	merische	Apert	ur)		100x (oil,	1,25)				

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: IRR2023-01

IRR2023-03-01	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
	Gez Indiv	Gez	Abu [10	Zellve [µ	FW	Rel.
Cyanobacteria						
Planktothrix rubescens	234	100,000	2,340	2656	6,21	0,84
Snowella lacustris	45	2,462	18,274	4581	83,71	11,37
Chlorophyceae						
Botryococcus braunii	36	100,000	0,360	4215	1,52	0,21
Elakatothrix genevensis						
Oocystis sp.						
Scenedesmus sp.						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum						
Euglenophyceae						
Trachelomonas volvocina	10	14,838	0,674	2690	1,81	0,25
Xanthophyceae		·	-			·
Gloeobotrys limneticus	97	2,462	39,391	66	2,58	0,35
Tetraëdriella jovetii	9	0,476	18,890	16	0,31	0,04
Chrysophyceae		·	-			·
Bitrichia chodatii						
Dinobryon divergens	3	2,462	1,218	186	0,23	0,03
Dinobryon sociale	4	2,462	1,624	210	0,34	0,05
Mallomonas caudata	45	14,838	3,033	10145	30,77	4,18
Mallomonas elongata	7	14,838	0,472	2121	1,00	0,14
Mallomonas sp.		•	,		,	,
Haptophyceae						
Chrysochromulina parva	18	0,476	37,780	39	1,48	0,20
Dinophyceae		•	,		,	,
Ceratium hirundinella	12	100,000	0,120	60191	7,22	0,98
Gymnodinium helveticum	16	14,838	1,078	9167	9,89	1,34
Peridinium sp.	3	100,000	0,030	69744	2,09	0,28
Cryptophyceae		•	,		,	,
Cryptomonas erosa + sp.	15	2,462	6,091	2109	12,85	1,75
Cryptomonas marssonii	7	2,462	2,843	478	1,36	0,18
Cryptomonas rostratiformis		,	,		,	,
Cryptomonas sp.						
Plagioselmis nannoplanctica	46	0,476	96,550	91	8,76	1,19
Rhodomonas lens	10	0,476	20,989	274	5,76	0,78
Bacillariophyceae		, ,	,	·	, ,	, -
Amphora ovalis						
Asterionella formosa	124	1,436	86,324	481	41,53	5,64
Cyclotella comensis	20	0,476	42,818	478	20,45	2,78
Cyclotella cyclopuncta	490	0,476	1027,625	314	322,67	43,84

Cyclotella kuetzingiana kl.	76	14,838	5,152	5519	28,43	3,86
Cyclotella kuetzingiana gr.	58	14,838	3,909	11284	44,11	5,99
Cyclotella radiosa	118	14,838	7,926	3343	26,50	3,60
Cyclotella sp.						
Eunotia sp.						
Fragilaria crotonensis	1328	14,838	89,479	772	69,06	9,38
Stephanodiscus alpinus	2	14,838	0,132	3635	0,48	0,07
Tabellaria flocculosa						
Ulnaria delicatissima var. angustissima	17	14,838	1,146	4269	4,89	0,66
Gesamt			1516,27		736,00	100,00
			10 ³ L ⁻¹		0,736	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: IRR2023-01_Diato

Taxon	Rebecca-							
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Cyclotella comensis	R0042		11	23				
Cyclotella cyclopuncta	R2195	22	117	31				
Cyclotella kuetzingiana	R0046				5	59	48	5
Cyclotella radiosa	R0051				39	124	1	
Stephanodiscus alpinus	R0076				1	4		
Summe Schalen pro Größenklasse			128	54	45	187	49	5

Gesamtsumme Schalen	490
Anteil centrischer Diatomeen am Gesamt-Biovolumen	60,1 %

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Irrsee 2023-06-12

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	IRR2023-02
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Messstellenname	Allgemeine Angab	oen								
Median State Median State Median State Median State Median Media	Gewässername		Irrsee		Rechtswert		44	7.885		
Detail WK Name	Messstellenname				Hochwert		30	9.454		
Detail WK ID Höhe Messpunkt [m] 553	(GZÜV-)Messstellen_ID				Median		31	31		
Zu jeweils mindestens 4 Terminen pro Untersuchungsjahr:	Detail WK Name				Trophischer G	rundzustand	oli	oligotroph		
Datum, Uhrzeit, Probenahme 2023-06-12 Probenahme-Team	Detail WK ID				Höhe Messpur	nkt [m]	55	3		
Datum, Uhrzeit, Probenahme 2023-06-12 Probenahme-Team	-	• •	. 9	4		4	- • - • -			
Datum Probenahme 2023-06-12 Probenahme Prüflabor * Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling					ninen pro Un	tersucnungs	sjani	<u>f</u>		
Uhrzeit Probenahme Limnologisch charakteristischer Zeitpunkt ** **Beginn der Sommerstagnation Beginn der Frühjahrszirkulation Witterung vor der Probenahme Während der Probenahme Wetter Wind Niederschlag Datum: Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme Während der Probenahme ja nein nein nein nein	Datum, Uhrzeit, Pro		•	1						
Direction of the content of the co	Datum Probenahme	2023-0	06-12	Prob	enahme-Team					
* wenn Proben nicht vom selben Prüfelber gezogen * Frühlphriszirkulation. Beginn der Sommerstagnation, Höhepunkt der Sommerstagnation, Beginn der Herbstzirkulation Witterung vor der Probenahme während der Probenahme	Uhrzeit Probenahme			Prüfla	abor *			rwirtschaft IGF	:	
Witterung vor der Probenahme Wetter Wind Niederschlag Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme Während der Probenahme ja nein mein sonstiges (Oberflächenfilm, Pollenflug) Pollenflug) Trübung, Art der Trübung ** mineralisch, organisch, Calcitfärbung Probenahme Probenahme Probenahmetiefe der quantitativen Probe nein March der Probenahme 2,8 Mischprobe mitegrierende Probe mitegriere				Begini	n der Sommerstagn	ation				
Witterung Vor der Probenahme während der Probenahme				nmerstaar	nation. Beginn der Herb	stzirkulation				
Wetter Wind Niederschlag Datum: Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja nein während der Probenahme ja nein nein Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Trübung, Art der Trübung ** Färbung Sichttiefe/Secchi-Tiefe [m] 2,8 Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) Probenahme Probenahmee Probenahmetiefe der quantitativen 0 - 21 m Art der Probenahme der x Mischprobe integrierende Probe					, .g					
Niederschlag Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja				nme		während de	er Probenahme			
Niederschlag Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja	Wetter									
Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Wind									
Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja	Niederschlag		Datum:							
Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Lufttemperatur [°C]									
Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Wolkenbedeckung [%]									
Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme			•			•				
vor der Probenahme ja nein während der Probenahme ja nein Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Sonstiges (Oberflächenfilm, Pollenflug) Pollenflug) Trübung, Art der Trübung ** Thermokline [m] 2,8 Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) **z.B. hoch, mittel, niedrig ** mineralisch, organisch, Calcitfärbung Probenahme Probenahmetiefe der quantitativen Probe [m; vonbis] 0 - 21 m Art der Probenahme der quantitativen Probe x Mischprobe integrierende Probe	Hydrographie, Trüb	ung, F	ärbung, Schicht	tung						
Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Trübung, Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig **mineralisch, organisch, Calcitfärbung Probenahme Probenahmee Probenahmetiefe der quantitativen Probe Probe [m; vonbis] Art der Probenahme der quantitativen Probe integrierende Probe	Hochwassereinfluss (de	r wichtig	gsten Zubringer)							
Schätzung auf m ü.A.)* Trübung, Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig **mineralisch, organisch, Calcitfärbung Probenahme Probenahmee Probenahmeeen O - 21 m Art der Probenahme der quantitativen Probe integrierende Probe	vor der Probenahme		□ ja □	nein	während der F	Probenahme		□ ja	□ nein	
Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig	•	mindest				erflächenfilm,				
Algenblüten, Auftriebsflocken					Thermokline [m]				
Algenbluten, Auftriebsflocken	Färbung				Sichttiefe/Sec	chi-Tiefe [m]		2	,8	
Probenahme Probenahmetiefe der quantitativen Probe [m; vonbis] 0 − 21 m Art der Probenahme der quantitativen Probe x Mischprobe □ integrierende Probe	Algenblüten, Auftriebsflo	ocken	□ ja □	nein		•	ne			
Probenahmetiefe der quantitativen Probe [m; vonbis] Art der Probenahme der quantitativen Probe □ integrierende Probe	* z.B. hoch, mittel, niedrig	* * mii	neralisch, organisch, Calcitfä	irbung						
Probe [m; vonbis]	Probenahme									
	•		ven 0 – 21 m				•			
wenn Mischprobe: Angabe der Tiefenstufen					wenn Mischprol	oe: Angabe der	Tiefe	nstufen		
Maschenweite für die qualitative Phytoplankton-Probe [µm]	•									

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Ana	lyse										
Probennummer	IR	R2023-	02	Bea	arbeiterIn		Christian Jers	abek			
Datum der Analyse	20)23-12-	09	Pro	benart		☐ lebend		x fixiert		
Quantitative Ar	nalyse										
Probennummer		IRR2	023-02		Nachfixieru Probe	ung	der quantitati	ven	□ ja	,	nein
BearbeiterIn		Chris	tian Jersabek		wenn ja, wann						
Datum der Analyse		2023	-12-09		Kammerty	р			Utermöh	l	
Zeitraum zw. Probena und Analyse	ahme	183	Гаge		Kammervo	lun	nen		10 ml		
					Ausgegosse Probe	ene	es Volumen der		100 ml		
Quantitative Probe	: Zählstra	ategie	T	1							
Proben-Nr.	Kamme	nmertyp Zählstrategie			Anzahl Diagonalen / Felo				len / Felde	r	Obj.
Froden-Nr.	Kallille	тсур	Diagonalen/Felder		Obj. 5x		Obj. 10x	0	bj. 25x	Obj. 40x	100x
IRR2023-02	Utermöl	nl	Ganze Kammer	1							
			Diagonale/Felder				3 D		21 F	20 F	
Diatomeenprob	e										
Herkunft											
wenn eigene Diatom	eenprobe										
Probennummer	IR	R2023-	02_Diat		Volumen						
Präparation	х	Glühpr	äparat 🗆 c	chemi	ische Oxidati	ion					
Optische Ausrü	stung d	es Zä	hlmikroskops und	Dur	chlichtmi	kr	oskops für	die	Diatome	en-Analys	se .
Zählmikroskop (Marke/Typ)					Zeiss Tela	ava	ıl 3, Jena				
Durchlichtmikrosko DIC ja/nein)	op (Mark	е/Тур,	Phasenkontrast ja/nei	in,	Leitz Diap	ola	n (ja/ja)				
Stärkstes Objektiv (Vergrößerung, nu	merische	Apert	ur)		100x (oil, 1,25)						

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: IRR2023-02

	e en	ss	zr]	ıen	-,1	lie
IRR2023-06-12	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	442	100,000	4,420	2427	10,73	3,16
Snowella lacustris						
Chlorophyceae						
Botryococcus braunii	16	100,000	0,160	4979	0,80	0,23
Coenochloris fottii						
Elakatothrix genevensis						
Oocystis sp.	7	1,436	4,873	602	2,93	0,86
Pediastrum boryanum						
Planktosphaeria gelatinosa						
Scenedesmus sp.						
Conjugatophyceae						
Cosmarium depressum	13	14,838	0,876	3736	3,27	0,96
Euglenophyceae						
Trachelomonas volvocina	6	14,838	0,404	2690	1,09	0,32
Xanthophyceae						
Gloeobotrys limneticus						
Tetraedriella jovetii						
Chrysophyceae						
Dinobryon divergens	48	0,556	86,355	256	22,08	6,51
Dinobryon sociale						
Mallomonas elongata						
Mallomonas sp.						
Uroglena sp.	9	0,529	17,001	148	2,51	0,74
Dinophyceae						
Ceratium hirundinella	53	100,000	0,530	73843	39,14	11,53
Gymnodinium helveticum	19	14,838	1,280	16630	21,29	6,27
Gymnodinium sp.						
Peridinium sp.	23	100,000	0,230	48312	11,11	3,27
Peridinium umbonatum - Complex	18	14,838	1,213	3178	3,86	1,14
Cryptophyceae						
Cryptomonas erosa + sp.	6	14,838	0,404	1670	0,68	0,20
Cryptomonas marssonii	33	1,436	22,973	593	13,63	4,02
Cryptomonas rostratiformis						
Cryptomonas sp.						
Plagioselmis nannoplanctica	47	0,529	88,784	132	11,72	3,45
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	528	100,000	5,280	612	3,23	0,95
Cyclotella cf. atomus						
Cyclotella cf. comensis	14	0,529	25,558	108	2,75	0,81

Cyclotella cyclopuncta	406	0,529	766,752	132	101,57	29,93
Cyclotella ocellata	186	14,838	12,558	3343	41,99	12,37
Cyclotella radiosa	80	14,838	5,382	2512	13,52	3,98
Cyclotella sp.	18	0,529	34,078	161	5,48	1,61
Eunotia sp.						
Fragilaria crotonensis	2152	100,000	21,522	931	20,04	5,90
Nitzschia sp.						
Stephanodiscus minutulus	14	0,529	25,558	201	5,14	1,51
Tabellaria flocculosa						
Ulnaria delicatissima var. angustissima	17	100,000	0,170	5019	0,85	0,25
Gesamt			1126,36		339,41	100,00
			10 ³ L ⁻¹		0,339 mm³ L	%
					1	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. **Diatomeenanalyse**

Laborinterne Probennummer: IRR2023-02_Diato

Anteil centrischer Diatomeen am Gesamt-Biovolumen

Taxon	Rebecca-	Grö	Größenklassen [µm]					
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Cyclotella cf. comensis	R0042	5	21					
Cyclotella cyclopuncta	R2195	34	133	4				
Cyclotella ocellata	R0048				37	93		
Cyclotella radiosa	R0051			9	86	31		
Cyclotella sp.	R0053	4	19					
Summe Schalen pro Größer	klasse	49	173	13	123	124		
		•	•		•	•	•	
Gesamtsumme Schalen			476					

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

50,2 %

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Irrsee 2023-08-10

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	IRR2023-03					
Auftraggeber	Amt der Oberösterreichischen Land	Oberösterreichischen Landesregierung						

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Sewissername	Allgemeine Angal	oen								
Median State Sta	Gewässername		Irrse	е		Rechtswert		44	7.885	
Detail WK Name	Messstellenname					Hochwert		30	9.454	
Detail WK ID	(GZÜV-)Messstellen_ID					Median				
Datum, Uhrzeit, Probenahme-Team, Prüflabor Datum Probenahme 2023-08-10 Probenahme-Team Prüflabor Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling Uhrzeit Probenahme Prüflabor Prüflabor Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling Uhrzeit Probenahme Prüflabor gezogen Höhepunkt der Sommerstagnation Höhepunkt der Sommerstagnation Uhrzeit Probenahme Wetter Wind Witterung Word der Probenahme Wasserwirtschaft IGF Wind Witterung Word der Probenahme Wasserwirtschaft IGF Wind Witterung Word der Probenahme Wetter Wind Wolkenbedeckung [%] Wolkenbedeckung [%] Wolkenbedeckung [%] Wolkenbedeckung [%] Wolkenbedeckung [%] Trübung, Färbung, Schichtung Ja Inein Während der Probenahme Ja Inein Inein Pollenflug Wasserstand aktuell (zumindest Schätzung auf m ü.A.) Trübung, Art der Trübung Sichttiefe/Secchi-Tiefe [m] 3,7 Algenblüten, Auftriebsflocken Ja Inein Grenze der euphotischen Zone Improbenahme Probenahme Probenahme Art der Probenahme Maschenweite für die quantitativen Pollenflug Art der Probenahme Maschenweite für die qualitative Wenn Mischprobe: Angabe der Tiefenstufen Integrierende Probe	Detail WK Name					Trophischer G	rundzustand	oli	gotroph	
Datum, Uhrzeit, Probenahme 2023-08-10 Probenahme-Team Prüflabor Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling Limnologisch charakteristischer Zeitpunkt ** Höhepunkt der Sommerstagnation Weiter Prüflabor gestogen Prüflabor gestogen gestogen Prüflabor gestogen Prüflabor gestogen gestogen Prüflabor gestogen g	Detail WK ID					Höhe Messpui	nkt [m]	55	i3	
Datum, Uhrzeit, Probenahme 2023-08-10 Probenahme-Team Prüflabor Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling Limnologisch charakteristischer Zeitpunkt ** Höhepunkt der Sommerstagnation Weiter Prüflabor gestogen Prüflabor gestogen gestogen Prüflabor gestogen Prüflabor gestogen gestogen Prüflabor gestogen g	-	!			4 T			_ : _ ! _ ! _	-	
Datum Probenahme						ninen pro Un	tersuchung	sjan	r: 	
Uhrzeit Probenahme Prüflabor * Bundesamt für Wasserwirtschaft IGF Mondsee, Scharfling	Datum, Uhrzeit, Pro			Геат, Prüfla						
Discretif Probenahme Prüflabor * Mondsee, Scharffling	Datum Probenahme	2023-0	8-10		Prob	enahme-Team				
Limnologisch charakteristischer Zeitpunkt ** *wenn Proben nicht vom selben Prüflator gezogen **Vern Proben nicht vom selben Prüflator gezogen **Prüflahrszühulation, Beginn der Sommerstagnetion, Höhepunkt der Sommerstagnetion, Beginn der Herbstzirkulation Witterung Vor der Probenahme während der Probenahme	Uhrzeit Probenahme				Prüfla	abor *			rwirtschaft I	GF
Wester Word of Probenahme Wahrend der Probenahme Wahrend der Probenahme Wester Wind Word of Probenahme Wahrend der Probenahme Wester Wind Word of Probenahme Wester Word of Probenahme Word of Probenahme Wester Word of Probenahme Word of Probenahme Word of Probenahme Wassereinfluss (der wichtigsten Zubringer) Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Sonstiges (Oberflächenfilm, Pollenflug) Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Thermokline [m] Thermokline [m] Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Word of Probenahme Wasserstand aktuell (zumindest Schätz	Limnologisch charakteri	stischer	Zeitp	'eitpunkt ** Höhepunkt der Sommerstagnation						
Witterung vor der Probenahme während der Probenahme	* wenn Proben nicht vom selben P	rüflabor gez	zogen							
Wetter Wind Niederschlag Datum: Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja			<u> </u>	,		, . <u>.</u>				
Wind Niederschlag Datum: Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja			vo	r der Probenah	me		während de	r Prol	benahme	
Niederschlag Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja	Wetter									
Lufttemperatur [°C] Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Wind									
Wolkenbedeckung [%] Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Niederschlag		Da	tum:						
Hydrographie, Trübung, Färbung, Schichtung Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme	Lufttemperatur [°C]									
Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja	Wolkenbedeckung [%]									
Hochwassereinfluss (der wichtigsten Zubringer) vor der Probenahme ja										
vor der Probenahme ja nein während der Probenahme ja nein Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Sonstiges (Oberflächenfilm, Pollenflug) Trübung, Pollenflug) Trübung, Art der Trübung ** Thermokline [m] 3,7 Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *** Bischtiefe/Secchi-Tiefe [m] 3,7 Probenahme Art der Probenahme der quantitativen Probe [m; vonbis] * Mischprobe quantitativen Probe x Mischprobe integrierende Probe Maschenweite für die qualitative wenn Mischprobe: Angabe der Tiefenstufen	Hydrographie, Trüb	ung, F	ärbu	ıng, Schicht	ung					
Wasserstand aktuell (zumindest Schätzung auf m ü.A.)* Trübung, Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig **mineralisch, organisch, Calcitfärbung Probenahme Probenahmetiefe der quantitativen Probe Probe [m; vonbis] Art der Probenahme der quantitativen Probe wenn Mischprobe: Angabe der Tiefenstufen Maschenweite für die qualitative	Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
Schätzung auf m ü.A.)* Trübung, Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig ** mineralisch, organisch, Calcitfärbung Probenahme Probenahmetiefe der quantitativen Probe [m; vonbis] Art der Probenahme der quantitativen Probe wenn Mischprobe: Angabe der Tiefenstufen Maschenweite für die qualitative	vor der Probenahme			ja □	nein	während der P	robenahme		□ja	☐ nein
Art der Trübung ** Färbung Algenblüten, Auftriebsflocken ja nein Grenze der euphotischen Zone [m] (Kompensationsebene) *z.B. hoch, mittel, niedrig **mineralisch, organisch, Calcitfärbung Probenahme Probenahmetiefe der quantitativen Probe [m; vonbis] Art der Probenahme der quantitativen Probe wenn Mischprobe: Angabe der Tiefenstufen Maschenweite für die qualitative	•	mindest					erflächenfilm,			
Algenblüten, Auftriebsflocken						Thermokline [m]			
Algenbluten, Auftriebsflocken Ja	Färbung					Sichttiefe/Sec	chi-Tiefe [m]			3,7
Probenahme Probenahmetiefe der quantitativen Probe [m; vonbis] 0 - 21 m Art der Probenahme der quantitativen Probe □ integrierende Probe □ integrierende Probe Wenn Mischprobe: Angabe der Tiefenstufen	Algenblüten, Auftriebsfl		ja □	nein		•	ne			
Probenahmetiefe der quantitativen Probe [m; vonbis] Art der Probenahme der quantitativen Probe □ integrierende Probe wenn Mischprobe: Angabe der Tiefenstufen Maschenweite für die qualitative	* z.B. hoch, mittel, niedrig	* * mir	neralisch	h, organisch, Calcitfäl	rbung				I .	
Probe [m; vonbis]	Probenahme									
Maschenweite für die qualitative	•		en	0 – 21 m					•	le Probe
						wenn Mischprob	e: Angabe der	Tiefe	enstufen	
i il tobialistati i i obe [hiii]	Maschenweite für die qu Phytoplankton-Probe [μι									

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Ana	llyse									
Probennummer	IR	R2023-	03	Ве	arbeiterIn	Christian Jers	sabek			
Datum der Analyse	20)24-01-	10	Pro	obenart	☐ lebend		x fixiert		
Quantitative Ar	nalyse									
Probennummer		IRR2	023-03		Nachfixieru Probe	ıng der quantitat	iven	□ja	хп	ein
BearbeiterIn		Chris	tian Jersabek		wenn ja, w	ann				
Datum der Analyse		2024	-01-10		Kammerty	•		Utermöh	I	
Zeitraum zw. Probena und Analyse	ahme	156	Таде		Kammervo	lumen		10 ml		
					Ausgegosse Probe	enes Volumen de	r	100 ml		
Quantitative Probe	: Zählstr	ategie	1	,						
Proben-Nr.	Kamme	ertvn	Zählstrategie			Anzahl	Diago	nalen / Felo	ler	ı
			Diagonalen/Felder		Obj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x	Obj. 100x
IRR2023-03	Utermö	hl	Ganze Kammer		1					
			Diagonale/Felder			3 D		27 F	15 F	
Diatomeenprob	e									
Herkunft										
wenn eigene Diatome	eenprobe									
Probennummer	IR	R2023-	03_Diat		Volumen					
Präparation	х	Glühpr	äparat		chemische C	Oxidation				
Optische Ausrü	stung d	es Zä	hlmikroskops und	Dur	chlichtmi	kroskops für	die	Diatome	en-Analyse	
Zählmikroskop (Marke/Typ)					Zeiss Tela	val 3, Jena				
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)					Leitz Diap	olan (ja/ja)				
Stärkstes Objektiv (Vergrößerung, numerische Apertur) 100x (oil, 1,25)										

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: IRR2023-03

	, c	v	N	ue]	=
IRR2023-08-10	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanocapsa elachista						
Chroococcus limneticus	6	1,847	3,249	236	0,77	0,36
Planktothrix rubescens	400	100,000	4,000	2451	9,80	4,56
Pseudanabaena catenata						
Radiocystis geminata						
Snowella lacustris	12	14,838	0,809	5208	4,21	1,96
Chlorophyceae						
Botryococcus braunii	31	100,000	0,310	9208	2,85	1,33
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii	18	0,397	45,336	34	1,54	0,72
Planktosphaeria gelatinosa						
Scenedesmus linearis						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum	10	14,838	0,674	3085	2,08	0,97
Teilingia granulata			•		•	
Euglenophyceae						
Trachelomonas volvocina	10	14,838	0,674	3056	2,06	0,96
Xanthophyceae						
Gloeobotrys limneticus	178	1,847	96,380	221	21,31	9,90
Chrysophyceae						
Bitrichia chodatii						
Chrysidiastrum catenatum	2	1,847	1,083	164	0,18	0,08
Dinobryon divergens	48	1,847	25,990	221	5,74	2,67
Dinobryon sociale	72	1,847	38,985	215	8,37	3,89
Mallomonas sp.						
Uroglena sp.	32	0,397	80,598	141	11,40	5,30
Haptophyceae						
Chrysochromulina parva	22	0,397	55,411	48	2,68	1,25
Dinophyceae						
Ceratium hirundinella	86	100,000	0,860	65145	56,02	26,04
Glenodinium sp.						
Gymnodinium helveticum	9	14,838	0,607	11255	6,83	3,17
Gymnodinium sp.	15	1,847	8,122	416	3,38	1,57
Gymnodinium uberrimum	2	100,000	0,020	113520	2,27	1,06
Peridinium sp.	12	100,000	0,120	26829	3,22	1,50
Cryptophyceae						
Cryptomonas erosa + sp.	93	14,838	6,268	1941	12,17	5,66
Cryptomonas marssonii	43	1,847	23,283	512	11,91	5,54

Plagioselmis nannoplanctica	120	0,397	302,243	92	27,86	12,95
Rhodomonas lens						
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	48	100,000	0,480	394	0,19	0,09
Cyclotella sp. gr.	30	14,838	2,022	3577	7,23	3,36
Cyclotella sp. kl.	25	0,397	62,967	161	10,12	4,71
Fragilaria crotonensis	87	100,000	0,870	899	0,78	0,36
Nitzschia sp.						
Ulnaria delicatissima var. angustissima	3	100,000	0,030	4736	0,14	0,07
Gesamt			761,39		215,13	100,00
			10 ³ L ⁻¹		0,215	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als rischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm^3 L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm^3 /l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: IRR2023-03_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im August bei 8,1 % - und damit deutlich unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Irrsee 2023-11-06

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	IRR2023-04				
Auftraggeber	Amt der Oberösterreichischen Land	r Oberösterreichischen Landesregierung					

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angab	en								
Gewässername		Irrse	ее		Rechtswert		44	7.885	
Messstellenname					Hochwert		30	9.454	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer C	Grundzustand	oli	gotroph	
Detail WK ID					Höhe Messpu	nkt [m]	55	3	
Z	'u jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-1	1-06	·	Prob	enahme-Team				
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		rwirtschaft IGF	
Limnologisch charakteri			punkt **	Begini	n der Herbstzirkula	tion			
* wenn Proben nicht vom selben Pl ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herb	estzirkulation			
Witterung									
		vo	r der Probenah	me		während de	r Prol	penahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
						·			
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (der	r wichtiq	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der F			□ ja □ n	ein
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,			
Trübung, Art der Trübung **					Thermokline [m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		4,9	
Algenblüten, Auftriebsflo	ocken		ja □	□ nein Grenze der euphotischen Zone [m] (Kompensationsebene)					
* z.B. hoch, mittel, niedrig	* * mil	neralisc	ch, organisch, Calcitfäl	rbung					
Probenahme									
Probenahmetiefe der qua Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			ischprobe ntegrierende Probe	
•					wenn Mischpro	be: Angabe de	r Tiefe	nstufen	
Maschenweite für die qu Phytoplankton-Probe [µr)			,	-			

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Ana	lyse										
Probennummer	IR	R2023-	04	Bea	arbeiterIn		Christian Jers	abek			
Datum der Analyse	20	24-01-	11	Pro	benart		☐ lebend		x fixie	ert	
Quantitative Ar	nalyse										
Probennummer		IRR2	023-04		Nachfixieru Probe	ıng	der quantitati	ven	□ ja		x nein
BearbeiterIn		Chris	stian Jersabek		wenn ja, w	ann	1				
Datum der Analyse		2024	I-01-11		Kammerty	р	Utermöhl				
Zeitraum zw. Proben- und Analyse	ahme		Kammervo	lum	nen		10 ml				
Ausgegossenes Volumen der Probe 100 ml											
Quantitative Probe	: Zählstra	tegie	T								
Proben-Nr.	Kamme	rtyp	Zählstrategie Diagonalen/Felder		Obj. 5x		Anzahl Di Obj. 10x		en / Fel j. 25x	der Obj. 40x	Obj. 100x
IRR2023-04	Utermöl	nl	Ganze Kammer		1		0.0,1 0.1.		<u>,,, </u>	0.2,1.10	
			Diagonale/Felder				3 D	12	2,21 F	21 F	
	ı					<u> </u>					
Diatomeenprok	e e										
Herkunft											
wenn eigene Diatom	eenprobe										
Probennummer	IR	R2023-	04_Diat		Volumen						
Präparation	х	Glühpr	räparat [] che	mische Oxid	latio	on				
Optische Ausrü	stung d	es Zä	hlmikroskops und	Dur	chlichtmi	kr	oskops für	die [Diaton	neen-Ana	lyse
Zählmikroskop (Marke/Typ)					Zeiss Tei	lavo	al 3, Jena				
Durchlichtmikrosko DIC ja/nein)	in,	Leitz Dia	plo	an (ja/ja)							
Stärkstes Objektiv (Vergrößerung, nu	merische	Apert	ur)		100x (oi	I, 1,	,25)				

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: IRR2023-04

Chroococcus minutus	IRR2023-11-06	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Chrococcus minutus	Cyanobacteria						
Planktothrix rubescens 306 100,000 3,060 2462 7,53 1,53 5,35 1,50 1,50 1,4838 11,390 992 11,30 2,3	Chroococcus limneticus	656	0,821	799,193	94	75,49	15,34
Snowella lacustris	Chroococcus minutus						
Chlorophyceae Botryococcus braunii 26 100,000 0,260 4329 1,13 0,23 Elakatothrix genevensis Oocystis sp. Pediastrum boryanum Planctonema lauterbornii 7 0,556 12,593 31 0,39 0,08 Planktosphaeria gelatinosa Pseudosphaerocystis lacustris 48 100,000 0,480 524 0,25 0,05 Scenedesmus linearis Euglenophyceae Trachelomonas sp. 2 14,838 0,135 5315 0,72 0,15 Xanthophyceae Gloeobotrys limneticus 51 0,556 91,752 180 16,49 3,35 Chrysophyceae Dinobryon divergens 69 0,821 84,061 197 16,57 3,37 Dinobryon sociale Kephyrion/Pseudokephyrion sp. Mallomonas sp. Dinophyceae Ceratium hirundinella 108 100,000 1,080 67535 72,94 14,82 Gymnodinium uberrimum 336 100,000 3,360 72050 242,09 49,20	Planktothrix rubescens	306	100,000	3,060	2462	7,53	1,53
Chlorophyceae Botryococcus braunii 26 100,000 0,260 4329 1,13 0,23 Elakatothrix genevensis Oocystis sp. Pediastrum boryanum Planctonema lauterbornii 7 0,556 12,593 31 0,39 0,08 Planktosphaeria gelatinosa Pseudosphaerocystis lacustris 48 100,000 0,480 524 0,25 0,05 Scenedesmus linearis Euglenophyceae Trachelomonas sp. 2 14,838 0,135 5315 0,72 0,15 Xanthophyceae Gloeobotrys limneticus 51 0,556 91,752 180 16,49 3,35 Chrysophyceae Dinobryon divergens Dinobryon divergens Dinobryon sociale Kephyrion/Pseudokephyrion sp. Mallomonas sp. Dinophyceae Ceratium hirundinella 108 100,000 1,080 67535 72,94 14,82 Gymnodinium helveticum 9 14,838 0,607 20466 12,41 2,52 Gymnodinium uberrimum 336 100,000 3,360 72050 242,09 49,20 Peridinium sp. 3 100,000 0,030 50325 1,51 0,31 Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Cryptomonas lens Bacillariophyceae Asterionella formosa 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotell	Snowella lacustris	169	14,838	11,390	992	11,30	2,30
Elakatothrix genevensis	Chlorophyceae						
Docystis sp. Pediastrum boryanum Planctonema lauterbornii 7 0,556 12,593 31 0,39 0,08 Planktosphaeria gelatinosa Pseudosphaerocystis lacustris 48 100,000 0,480 524 0,25 0,05	Botryococcus braunii	26	100,000	0,260	4329	1,13	0,23
Pediastrum boryanum Planctonema lauterbornii 7 0,556 12,593 31 0,39 0,08 Planktosphaeria gelatinosa Pseudosphaerocystis lacustris 48 100,000 0,480 524 0,25 0,05 0,05 Scenedesmus linearis	Elakatothrix genevensis						
Planctonema lauterbornii	Oocystis sp.						
Planktosphaeria gelatinosa	Pediastrum boryanum						
Pseudosphaerocystis lacustris Scenedesmus linearis Euglenophyceae Trachelomonas sp. 2	Planctonema lauterbornii	7	0,556	12,593	31	0,39	0,08
Scenedesmus linearis Suglenophyceae Trachelomonas sp. 2 14,838 0,135 5315 0,72 0,15	Planktosphaeria gelatinosa						
Euglenophyceae	Pseudosphaerocystis lacustris	48	100,000	0,480	524	0,25	0,05
Trachelomonas sp. 2	Scenedesmus linearis						
Xanthophyceae Gloeobotrys limneticus 51 0,556 91,752 180 16,49 3,35	Euglenophyceae						
Chrysophyceae	Trachelomonas sp.	2	14,838	0,135	5315	0,72	0,15
Chrysophyceae Dinobryon divergens 69 0,821 84,061 197 16,57 3,37	Xanthophyceae						
Dinobryon divergens	Gloeobotrys limneticus	51	0,556	91,752	180	16,49	3,35
Dinobryon sertularia Dinobryon sociale Kephyrion/Pseudokephyrion sp. Mallomonas sp.	Chrysophyceae						
Dinobryon sociale Kephyrion/Pseudokephyrion sp. Mallomonas sp.	Dinobryon divergens	69	0,821	84,061	197	16,57	3,37
Kephyrion/Pseudokephyrion sp. Mallomonas sp. Image: Content of the property of th	Dinobryon sertularia						
Mallomonas sp. Image: Ceratium hirundinella bit in the properties of the propert	Dinobryon sociale						
Dinophyceae Lost of the part of the pa	Kephyrion/Pseudokephyrion sp.						
Ceratium hirundinella 108 100,000 1,080 67535 72,94 14,82 Gymnodinium helveticum 9 14,838 0,607 20466 12,41 2,52 Gymnodinium uberrimum 336 100,000 3,360 72050 242,09 49,20 Peridinium sp. 3 100,000 0,030 50325 1,51 0,31 Cryptomphyceae Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica 75 0,556 134,930 82 11,05 2,25 Rhodomonas lens 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,8	Mallomonas sp.						
Gymnodinium helveticum 9 14,838 0,607 20466 12,41 2,52 Gymnodinium uberrimum 336 100,000 3,360 72050 242,09 49,20 Peridinium sp. 3 100,000 0,030 50325 1,51 0,31 Cryptophyceae Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica 75 0,556 134,930 82 11,05 2,25 Rhodomonas lens Bacillariophyceae 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 103 L-1 0,492 <td< td=""><td>Dinophyceae</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Dinophyceae						
Gymnodinium uberrimum 336 100,000 3,360 72050 242,09 49,20 Peridinium sp. 3 100,000 0,030 50325 1,51 0,31 Cryptophyceae Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica 75 0,556 134,930 82 11,05 2,25 Rhodomonas lens 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 103 L ⁻¹ 0,492 %	Ceratium hirundinella	108	100,000	1,080	67535	72,94	14,82
Peridinium sp. 3 100,000 0,030 50325 1,51 0,31 Cryptophyceae Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica 75 0,556 134,930 82 11,05 2,25 Rhodomonas lens Bacillariophyceae Asterionella formosa 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 10,492 %	Gymnodinium helveticum	9	14,838	0,607	20466	12,41	2,52
Cryptophyceae 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica 75 0,556 134,930 82 11,05 2,25 Rhodomonas lens 88 100,000 0,880 514 0,45 0,09 Asterionella formosa 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 103 L-1 0,492 %	Gymnodinium uberrimum	336	100,000	3,360	72050	242,09	49,20
Cryptomonas erosa 66 14,838 4,448 1807 8,04 1,63 Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica Rhodomonas lens 75 0,556 134,930 82 11,05 2,25 Bacillariophyceae 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 103 L-1 0,492 %	Peridinium sp.	3	100,000	0,030	50325	1,51	0,31
Cryptomonas marssonii 3 0,821 3,655 478 1,75 0,36 Plagioselmis nannoplanctica Rhodomonas lens 75 0,556 134,930 82 11,05 2,25 Bacillariophyceae 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 103 L-1 0,492 %	Cryptophyceae						
Plagioselmis nannoplanctica Rhodomonas lens 75 0,556 134,930 82 11,05 2,25 Bacillariophyceae Asterionella formosa 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 103 L ⁻¹ 0,492 %	Cryptomonas erosa	66	14,838	4,448	1807	8,04	1,63
Rhodomonas lens Bacillariophyceae	Cryptomonas marssonii	3	0,821	3,655	478	1,75	0,36
Bacillariophyceae 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 1208,55 492,08 100,00 103 L-1 0,492 %	Plagioselmis nannoplanctica	75	0,556	134,930	82	11,05	2,25
Asterionella formosa 88 100,000 0,880 514 0,45 0,09 Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 1208,55 492,08 100,00 103 L-1 0,492 %	Rhodomonas lens						
Cyclotella sp. gr. 3 14,838 0,202 3577 0,72 0,15 Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 1208,55 492,08 100,00 103 L-1 0,492 %	Bacillariophyceae						
Cyclotella sp. kl. 27 0,556 48,575 108 5,23 1,06 Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 1208,55 492,08 100,00 10³ L⁻¹ 0,492 %	Asterionella formosa	88	100,000	0,880	514	0,45	0,09
Fragilaria crotonensis 786 100,000 7,863 767 6,03 1,23 Gesamt 1208,55 492,08 100,00 10³ L⁻¹ 0,492 %	Cyclotella sp. gr.	3	14,838	0,202	3577	0,72	0,15
Gesamt 1208,55 492,08 100,00 10³ L⁻¹ 0,492 %	Cyclotella sp. kl.	27	0,556	48,575	108	5,23	1,06
10 ³ L ⁻¹ 0,492 %	Fragilaria crotonensis	786	100,000	7,863	767	6,03	1,23
10 ³ L ⁻¹ 0,492 %	Gesamt			1208,55		492,08	100,00
· ·							
						•	75

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: IRR2023-04_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im November bei 1,2 % - und damit deutlich unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

7. MONDSEE

7.1. Gutachten Phytoplankton Ergebnisübersicht für das Untersuchungsjahr 2023 sowie 3-Jahresmittel

Ergebnisübersicht der Untersuchungstermine eines Jahres

sowie 3-Jahresmittel

Datum	Chlorophyll-a [µgL ⁻¹]	Biovolumen* [mm³L ⁻¹]	Brettum-Index
16.01.2023	2,30	0,17	3,85
15.02.2023	3,40	0,73	3,63
06.03.2023	4,00	0,84	3,67
03.04.2023	3,60	0,76	3,70
10.05.2023	2,40	0,92	4,32
05.06.2023	2,40	0,67	4,48
03.07.2023	2,90	0,59	3,68
01.08.2023	3,00	0,51	3,72
11.09.2023	3,50	0,59	3,72
02.10.2023	4,00	1,01	3,72
08.11.2023	2,10	0,22	4,03
04.12.2023	1,20	0,16	3,91

^{*} abz. heterotrophe Arten

Jahre	(Jahresmittelwert)		Biovolumen (Jahresmittelwert)		Brettum-Index (Jahresmittelwert)		Gesamtbewertung (gewichteter MW)	Ökologische Zustandsklasse
	[µgL ⁻¹]	nEQR	[mm ³ L ⁻¹]	nEQR	Index	nEQR	nEQR	
2021	2,55	0,78	0,53	0,73	3,75	0,68	0,716	gut
2022	2,92	0,72	0,69	0,66	3,82	0,70	0,694	gut
2023	2,90	0,72	0,60	0,70	3,87	0,71	0,708	gut
		3	3 Jahresmitte	el			0,706	gut

BEURTEILUNG

Qualitätselement Phytoplankton im Untersuchungsjahr 2023 gut

Qualitätselement Phytoplankton im 3-Jahresmittel (2021-2023) gut

1. Angaben zum See, zur Untersuchungsstelle und Probenahmen

See und Untersuchungss	telle					
Gewässername	Mondse	e	Höhe Messpunkt [m]		481	
Messstellenname			Fläche [km²]	13.80		
(GZÜV-)Messstellen_ID			Maximale Länge [km]	9,1		
Rechtswert	454.554	1	Maximale Breite [km]		2,3	
Hochwert	296.874	1	Maximale Tiefe [m]		68	
Median	31		Mittlere Tiefe [m]		36	
Detail WK Name			Gesamtvolumen [Mio	. m³]	496,8	
Detail WK ID			Mittlerer Abfluss (MQ	() [m³/s]	9,3	
IC-Seentyp (Interkalibrierung)	L-AL3		Abfluss		Seeach	ne
AT-Seentyp (National)	D1		Wassererneuerungsze theoretisch [Jahre]	eit /	1,7	
Trophischer Grundzustand	oligotro	ph	Durchmischung / Schi	chtungstyp	Holo- /	/ monomiktisch
Nummern der zugrunde liegender	n Prüfhe-	1. Termin	2. Termin	3. Termin		
Nummern der zugrunde liegender	n Prüfbe-	1. Termin	2	3		
		2022/04	2022/02	2022/0	0	4. Termin
richte		2023/01	2023/02	2023/0	3	2023/04
Probenahmetermine der zugrunde		2023/01	2023/02 2023-02-15	2023/0		
Probenahmetermine der zugrunde		·	·	,		2023/04
richte Probenahmetermine der zugrunde de Prüfberichte Nummern der zugrunde liegender richte	e liegen-	2023-01-16	2023-02-15	2023-03-	06	2023/04
Probenahmetermine der zugrunde de Prüfberichte Nummern der zugrunde liegender	e liegen- n Prüfbe-	2023-01-16 5. Termin	2023-02-15 6. Termin	2023-03- 7. Termin	7	2023/04 2023-04-03 8. Termin 2023/08
Probenahmetermine der zugrunde de Prüfberichte Nummern der zugrunde liegender richte Probenahmetermine der zugrunde	e liegen- n Prüfbe-	2023-01-16 5. Termin 2023/05	2023-02-15 6. Termin 2023/06	2023-03- 7. Termin 2023/0	7	2023/04 2023-04-03 8. Termin
Probenahmetermine der zugrunde de Prüfberichte Nummern der zugrunde liegender richte Probenahmetermine der zugrunde	e liegen- n Prüfbe- e liegen-	2023-01-16 5. Termin 2023/05 2023-05-10	2023-02-15 6. Termin 2023/06 2023-06-05	2023-03- 7. Termin 2023/0 2023-07-	7 03	2023/04 2023-04-03 8. Termin 2023/08 2023-08-01

2. Ergebnisübersicht – Zusammenfassung der 12 Beprobungstermine

Chlorophyll-a Konzentration	μgL ⁻¹	EQR	nEQR				
Referenzwert	1,70	1,00	1,00				
Grenze sehr gut/gut	2,43	0,70	0,80				
Grenze gut/mäßig	4,25	0,40	0,60				
Jahresmittel	2,90	0,59	0,72				
Biovolumen	mm³L ⁻¹	EQR	nEQR				
Referenzwert	0,25	1,00	1,00				
Grenze sehr gut/gut	0,42	0,60	0,80				
Grenze gut/mäßig	1,00	0,25	0,60				
Jahresmittel	0,60	0,42	0,70				
Brettum-Index	Wert	EQR	nEQR				
Referenzwert	5,19	1,00	1,00				
Grenze sehr gut/gut	4,29	0,83	0,80				
Grenze gut/mäßig	3,39	0,65	0,60				
Jahresmittel	3,87	0,75	0,71				
Normierte EQR ge	samt	0,708					
Ökologische Zustand	sklasse	gut					

7.2. Ergebnistabellen

Tab. 7.2.1. Zusammenfassung quantitative und qualitative Phytoplanktonproben

MONDSEE 2023	Algenfrischgewicht [μg l ⁻¹]												
TAXON	16.01.	15.02.	06.03.	03.04.	10.05.	05.06.	03.07.	01.08.	11.09.	02.10.	08.11.	04.12.	Mittel
Cyanobacteria													
Aphanizomenon flos-aquae							1,86	0,24	0,04	0,48	1,36	0,08	0,34
Aphanocapsa sp.	0	0						0	37,62	8,55	0	0	3,85
Chroococcus limneticus								0,77	0	8,42	1,03	0,15	0,86
Chroococcus minutus	0		0										
Gomphosphaeria aponina	0	0	0					٥	٥		0	٥	
Planktothrix rubescens	5,91	267,26	203,15	165,72	239,81	330,45	330,69	251,82	286,10	251,23	69,70	61,74	205,30
Pseudanabaena catenata	0												
Snowella lacustris	0,82	2,12					0	0	0	7,32	1,69	0,29	1,02
Woronichinia naegeliana	0	0											
Chlorophyceae													
Botryococcus braunii	0,31	1,10	0,77	0,29	2,24	3,07	0,70	0,53		0,50	0,19	2,94	1,05
Coenochloris sp.							0	0					
Elakatothrix cf. biplex								0					
Elakatothrix genevensis	٥	0		٥	0	0	0	٥	٥	٥	0	٥	
Koliella sp.	0												
Oocystis solitaria								1,06			0		0,09
Oocystis sp.							0	٥	٥	٥	0		
Pediastrum boryanum		0				0	0	0	0	0	0		
Phacotus lenticularis											0		
Planctonema lauterbornii	0						0	4,22	0,88	0	0	0	0,42
Planktosphaeria gelatinosa							0		0				·
Planktosphaeria sp.							0						
Pseudosphaerocystis lacustris							0,17			0,49			0,05
Scenedesmus linearis								0		0	0		
Scenedesmus sp.								0	0		0		
Sphaerocystis schroeteri							0	o			0		
Tetrachlorella alternans										o			
Tetrachlorella incerta							0		0	0	0		
Tetraedron minimum									0				
Tetrastrum triangulare								0	0	0	0	0	
Willea (=Crucigeniella) irregularis								o					
Conjugatophyceae													
Cosmarium depressum	3,68	0,77	2,54	3,49	1,56	3,05	3,05	5,23	3,76	6,78	3,44	0,50	3,15
Staurastrum cingulum	1 3,33	-,	_,-,-	, , , ,	0,16	0,32	-,,,,	0	0	,,,,	,	0	0,04
Euglenophyceae					, , ,								
Trachelomonas volvocina								0,32					0,03
Xanthophyceae												İ	
Gloeobotrys limneticus								0	0	0	0		
Tetraedriella jovetii				0	0								
Chrysophyceae												İ	
Bitrichia chodatii							0	0	0	0			
Dinobryon bavaricum								0	1,58	0,37		0	0,16
Dinobryon crenulatum						0	0	2,47	,,,,				0,21
Dinobryon divergens	0				7,76	29,30	116,53	14,87	2,66	4,65	0		14,65
Dinobryon sertularia	٥		0		1,.5		1 1 3,00	.,,,,,	,55	2,20			0,18
Dinobryon sociale					0		0	0	0	5,94			0,49
Kephyrion/Pseudokephyrion sp.	0									3,54] 3,43

Mallomonas caudata		0,40		0,32	1,56		0,32	1,65	Ī				0,35
Mallomonas elongata		,		,	0	1,06	1,69	0,45				0	0,27
Mallomonas sp.		0		0	12,89	0	10,76	0	0	0			1,97
Pseudopedinella sp.	0			0	0		. 0,. 0			0			.,0.
Uroglena sp.										11,44			0,95
Haptophyceae										11,44			0,00
Chrysochromulina parva	0		0	1,19	0	5,37	3,95	0	0	2,82	0	0	1,11
Dinophyceae				1,19		5,37	3,93			2,02			1,11
' '	4.50	4.05	4.00	4.04	40.00	0.00	E4.00	400 40	E4 04	04.40	47.00	0.07	20.00
Ceratium hirundinella	1,53	1,05	4,33	4,01	13,96	2,88	54,26	106,42	51,34	94,19	17,63	6,97	29,88
Dinophyceae indet.	o							6,21	55,06	0	3,08	0	5,36
Glenodinium sp.		0.05	4.40	00.50	0.40		2,70						0,22
Gymnodinium helveticum	6,20	2,95	1,19	69,53	6,12	11,11	4,35	9,21	20,77	36,43	11,89	7,43	15,60
Gymnodinium sp.kl.	0,91	1,21	4,60	1,69	4,83	1,09		7,61		5,44	2,00	0	2,45
Peridinium sp.	3,27	0,35		0	4,91		4,68	3,54	22,66	15,22		8	4,55
Peridinium umbonatum - Complex							1,13		1,49	0			0,22
Peridinium willei				4,76	0							7,07	0,99
Cryptophyceae													
Cryptomonas erosa + sp.	2,82	3,74	2,21	1,91	2,14	2,94	16,20	18,00	36,92	88,91	11,10	16,60	16,96
Cryptomonas marssonii	٥		٥				1,56	15,90	12,92	10,88	1,27		3,54
Cryptomonas rostratiformis		1,00	1,00	0	0	0,67	2,00				0		0,39
Cryptomonas sp.						0	0						
Plagioselmis lacustris							0						
Plagioselmis nannoplanctica	3,27	9,13	12,23	12,72	23,28	26,12	8,27	29,33	30,32	36,31	18,81	8,51	18,19
Rhodomonas lens	18,70	28,24	36,78	43,43	100,74	14,57	0	0	0	23,69	47,78	20,90	27,90
Bacillariophyceae													
Achnanthes sp.					0		0	0		0	0		
Asterionella formosa	4,28	21,74	45,13	164,92	1,60	0,22	0,36	0,48	4,85	5,38	0,38	2,63	21,00
Aulacoseira islandica		16,07	18,29									0	2,86
Aulacoseira subarctica	59,30	173,76		74,25	10,22	0,50	1,23	0,39	1,72	0,92	0,97	4,18	51,33
Cyclotella bodanica						0	0,56	-					0,05
Cyclotella cf. comensis	0,18			0,33	3,52		,				1,89	0,58	0,54
Cyclotella cyclopuncta	6,79	8,04	0	1,56	125,92	232,03					17,71	7,76	33,32
Cyclotella distinguenda	-, -			,		0,03					0,23	, -	0,02
Cyclotella intermedia						0,00					0,_0	0,52	0,04
Cyclotella kuetzingiana	0,07	0,22	0,33								0,67	-,-	0,11
Cyclotella ocellata	-,-	-,			4,29	1,68					0,42	0,09	0,54
Cyclotella radiosa	0,04	0,09	0,18	0,85	3,42	3,63		0			0,40	0,50	0,76
Cyclotella sp.	1,93	5,93	13,77	26,23	13,23	0	22,82	37,40	17,92	85,66	0, 10	0,00	18,74
Cymatopleura elliptica	0,43	0,00	1,18	5,03	10,20		22,02	01,10	11,02	00,00		0	0,55
Cymatopleura solea	1,65	2,44	8,23	9,24								1,02	1,88
Cymbella ehrenbergii	1,00	_,	0,20	0,2 :				0				1,02	1,00
Cymbella lanceolata				0							0		
Cymbella sp.								0					
Diatoma ehrenbergii				0	0						0		
Diatoma sp.			0										
Diatoma tenuis								0					
Discostella glomerata											0,34		0,03
Eucocconeis flexella		0									0,34		0,03
Eunotia sp.					0			o					
Fragilaria crotonensis	13,48	2,36	8,49	94,35	301,92	1,12	0,34		1,99	160,48	5,10	5,50	49,59
_	13,40	2,30	0,49	34,33	501,82	1,12	0,34		1,99	100,40	3,10	3,30	+5,59
Gyrosigma sp. Melosira varians		0		2,99		0							0,25
				2,99				o					0,25
Nitzschia acicularis	0	2.00	0.45	0.00	0						4.50		0.00
Staurosira construens		3,02	2,15	0,93							1,50	0.04	0,63
Stephanocostis chantaica	2 2 2		_	0,09								0,04	0,01
Stephanodiscus alpinus	0,05	0,56	0.55	0,63		1,69					0,58	1,13	0,39
Stephanodiscus minutulus	0,46	15,00	3,55	6,81	46 = 5			4.55					2,15
Stephanodiscus neoastraea	31,87	145,45	172,23	83,51	10,50	0,88	2,14	1,39	0	3,40	4,76	7,34	38,62

Tabellaria fenestrata				0,41	0,69	0,13							0,10
Tabellaria flocculosa	0	1,00	0,50	3,18	15,84	0,29		0				0	1,73
Ulnaria delicatissima	۰				0,90		0,42	0	17,65	166,16	3,13	0,54	15,73
Ulnaria delicatissima var. angustissima	3,71	13,31	12,42	40,75	1,00	0	0,24	0,41	0	0	0,31		6,01
Ulnaria sp.					5,66	4,99	0	0					0,89
Ulnaria ulna		0	0,41	1,25	0,82				0				0,21
Picoplankton < 5 μm													
Picoplankton indet.				6,41	4,65		1,79	1,98	2,02	3,78			1,72
Frischgewicht tot. (µg/I)	171,7	728,3	844,2	832,8	926,1	679,2	594,8	521,9	610,3	1048,0	229,3	165,0	612,63
Biovolumen tot. (mm³/l)	0,172	0,728	0,844	0,833	0,926	0,679	0,595	0,522	0,610	1,048	0,229	0,165	0,613
abz. heterotrophe (mm³/l)	0,165	0,725	0,843	0,763	0,920	0,668	0,590	0,513	0,589	1,012	0,217	0,158	0,597
1000 μ g/l = 1 mm ³ /l													
Chlorophyll-a [µg/l]	2,3	3,4	4,0	3,6	2,4	2,4	2,9	3,0	3,5	4,0	2,1	1,2	2,90
Relativer Anteil Chlorophyll-a [%]	1,34	0,47	0,47	0,43	0,26	0,35	0,49	0,57	0,57	0,38	0,92	0,73	0,58
		•			•		•						
Anzahl Taxa / Termin	43	40	33	40	42	35	48	58	44	46	51	40	
Anzahl Taxa insgesamt													103

Tab. 7.2.2. Zusammenfassung Algenklassen der quantitativen Phytoplanktonproben

MONDSEE 2023	Algenfrischgewicht [μg l ⁻¹]												
Algenklasse	16.01.	15.02.	06.03.	03.04.	10.05.	05.06.	03.07.	01.08.	11.09.	02.10.	08.11.	04.12.	Mittel
Bacillariophyceae Centrales	100,7	365,1	496,9	197,2	171,1	240,4	26,8	39,2	19,6	90,0	28,0	22,1	149,77
Bacillariophyceae Pennales	23,5	43,9	78,5	320,1	328,4	6,8	1,4	0,9	24,5	332,0	10,4	9,7	98,34
Chlorophyceae	0,3	1,1	0,8	0,3	2,2	3,1	0,9	5,8	0,9	1,0	0,2	2,9	1,62
Chrysophyceae		0,4		0,3	22,2	30,4	129,3	19,4	4,2	24,6			19,24
Conjugatophyceae Desmid. Conjugatophyceae Zygnem.	3,7	0,8	2,5	3,5	1,7	3,4	3,1	5,2	3,8	6,8	3,4	0,5	3,19
Cryptophyceae Zygnem.	24,8	42,1	52,2	58,1	126,2	44,3	28,0	63,2	80,2	159,8	79,0	46,0	66,98
Cyanobacteria coccal	0,8	2,1						0,8	37,6	24,3	2,7	0,4	5,73
Cyanobacteria filamentös	5,9	267,3	203,1	165,7	239,8	330,5	332,5	252,1	286,1	251,7	71,1	61,8	205,64
Dinophyceae	11,9	5,6	10,1	80,0	29,8	15,1	67,1	133,0	151,3	151,3	34,6	21,5	59,27
Euglenophyceae								0,3					0,03
Haptophyceae				1,2		5,4	3,9			2,8			1,11
Prasinophyceae													
Ulvophyceae													
Xanthophyceae													
Picoplankton indet.				6,4	4,7		1,8	2,0	2,0	3,8			1,72
Frischgewicht tot. (µg/l)	171,7	728,3	844,2	832,8	926,1	679,2	594,8	521,9	610,3	1048,0	229,3	165,0	612,6
Biovolumen tot. (mm³/l)	0,172	0,728	0,844	0,833	0,926	0,679	0,595	0,522	0,610	1,048	0,229	0,165	0,613
abz. heterotrophe (mm³/l)	0,165	0,725	0,843	0,763	0,920	0,668	0,590	0,513	0,589	1,012	0,217	0,158	0,597
1000 μg/l = 1 mm³/l													

Tab. 7.2.3. Brettum Index:Werte der einzelnen Trophie-Klassen, für 2023 im Mondsee quantifizierte Taxa

MONDSEE 2023	Rebecca-ID	Brettum-Indexwerte der einzelnen Trophieklassen								
Taxon		<=5	5-8	8-15	15-30	30-60	>60			
Aphanizomenon flos-aquae	R1558				1	3	6			
Aphanocapsa sp.	R1423									
Asterionella formosa	R0135									
Aulacoseira islandica	R0025		1	3	3	2	1			
Aulacoseira subarctica	R0033		1	8	1					
Botryococcus braunii	R0493	5	2	2	1					
Ceratium hirundinella	R1672									
Chroococcus limneticus	R1438	4	2	2	1	1				
Chrysochromulina parva	R1818			1	3	4	2			
Cosmarium depressum	R1209	2	2	3	1	1	1			
Cryptomonas erosa	R1378									
Cryptomonas marssonii	R1382									
Cryptomonas rostratiformis	R1377			1	3	5	1			
Cyclotella bodanica	R0040	7	3							
Cyclotella cf. comensis	R0042	7	2	1						
Cyclotella cyclopuncta	R2195	7	3							
Cyclotella distinguenda	R2196	8	1	1						
Cyclotella sp.	R0053		-							
Cyclotella intermedia	R0040	7	3							
Cyclotella kuetzingiana	R0046									
Cyclotella ocellata	R0048		1	1	4	3	1			
Cyclotella radiosa	R0051			1	3	5	1			
Cyclotella sp.	R0053									
Cymatopleura elliptica	R0161									
Cymatopleura solea	R0162									
Dinobryon bavaricum	R1066	3	3	2	2					
Dinobryon crenulatum	R1069	2	2	3	2	1				
Dinobryon divergens	R1073									
Dinobryon sertularia	R1081		1	1	5	3				
Dinobryon sociale	R1083									
Dinophyceae indet.	R1708									
Discostella glomerata	R2058	6	3	1						
Fragilaria crotonensis	R0223									
Glenodinium sp.	R1642		2	5	3					
Gymnodinium sp.	R1654	1	5	2	1	1				
Mallomonas caudata	R1100			1	4	5				
Mallomonas elongata	R1103									
Mallomonas sp.	R1109									
Melosira varians	R0062									
Oocystis solitaria	R0704				2	3	5			

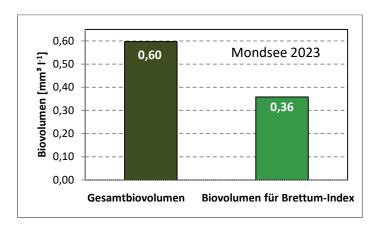
1		i					
Peridinium sp.	R1699						
Peridinium umbonatum - Complex	R1903	7	2		1		
Peridinium willei	R1704	1	4	2	1	1	1
Picoplankton indet.	R2617						
Plagioselmis nannoplanctica	R2162						
Planctonema lauterbornii	R0919						
Planktothrix rubescens	R1617	1	1	3	4	1	
Pseudosphaerocystis lacustris	R0736			2	5	2	1
Rhodomonas lens	R1407						
Snowella lacustris	R1510		1	4	4	1	_
Staurastrum cingulum	R1283				1	8	1
Staurosira construens	R2169			2	2	6	
Stephanocostis chantaica	R0075						
Stephanodiscus alpinus	R0076						
Stephanodiscus minutulus	R0082				3	4	3
Stephanodiscus neoastraea	R0083		1	2	4	3	
Tabellaria fenestrata	R0440	1	1	4	4		
Tabellaria flocculosa	R0442	1	4	5			
Trachelomonas volvocina	R1776			1	4	5	
Ulnaria delicatissima	R2173						
Ulnaria delicatissima var. angustissima	R2174	2	3	3	2		
Ulnaria sp.	R2498						
Ulnaria ulna	R2175						
Uroglena sp.	R1151		3	3	3	1	

Relativer Anteil quantifizierter Taxa für Brettum Index [%]	57,8
Relativer Anteil des Biovolumen der eingestuften Taxa am Gesamtbiovolumen [%]	60,0

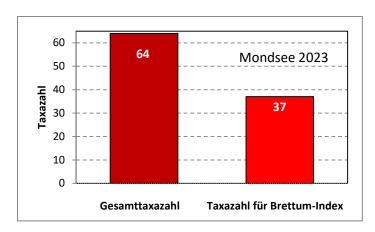
Tab. 7.2.4. Prägende trophische Indikatoren (Brettum Scores) und quantitativ wichtige (Biovolums-Anteil > 3 %) Arten - Mondsee 2023

MONDSEE Taxon	Rebecca-	Biovolumen		Brettum-Indexwerte					Rel. Anteil
12		r3 u -1a	_	5-	8-	15-	30-	00	F0/3
Jänner	B0022	[mm³ L-1]	<=5	8	15	30	60	>60	[%]
Aulacoseira subarctica	R0033	0,0593		1	8	1	2		35,84%
Stephanodiscus neoastraea	R0083	0,0281	_	1	2	4	3		19,26%
Planktothrix rubescens	R1617	0,0059	1 7	1	3	4	1		3,57%
Cyclotella cyclopuncta	R2195	0,0043	/	3					4,10%
Rhodomonas lens	R1407	0,0187							11,30%
Fragilaria crotonensis	R0223	0,0135							8,15%
Februar	D1617	0.05=0	1 4			_			0.5.0=0/
Planktothrix rubescens	R1617	0,2673	1	1	3	4	1		36,85%
Aulacoseira subarctica	R0033	0,1738		1	8	1	•		23,95%
Stephanodiscus neoastraea	R0083	0,1360		1	2	4	3		20,05%
Rhodomonas lens	R1407	0,0282							3,89%
Asterionella formosa	R0135	0,0217							3,00%
März			ı						
Aulacoseira subarctica	R0033	0,2886		1	8	1			34,23%
Planktothrix rubescens	R1617	0,2031	1	1	3	4	1		24,10%
Stephanodiscus neoastraea	R0083	0,1559		1	2	4	3		20,43%
Asterionella formosa	R0135	0,0451							5,35%
Rhodomonas lens	R1407	0,0368							4,36%
April			•						
Planktothrix rubescens	R1617	0,1657	1	1	3	4	1		21,71%
Stephanodiscus neoastraea	R0083	0,0835		1	2	4	3		10,94%
Aulacoseira subarctica	R0033	0,0742		1	8	1			9,73%
Ulnaria delicatissima var. angustissima	R2174	0,0408	2	3	3	2			5,34%
Asterionella formosa	R0135	0,1649							21,61%
Fragilaria crotonensis	R0223	0,0944							12,36%
Rhodomonas lens	R1407	0,0434							5,69%
Cyclotella sp.	R0053	0,0262							3,44%
Mai			•						
Planktothrix rubescens	R1617	0,2398	1	1	3	4	1		26,07%
Cyclotella cyclopuncta	R2195	0,1259	7	3					13,69%
Fragilaria crotonensis	R0223	0,3019							32,82%
Rhodomonas lens	R1407	0,1007							10,95%
Juni									
Planktothrix rubescens	R1617	0,3305	1	1	3	4	1		49,46%
Cyclotella cyclopuncta	R2195	0,2320	7	3					34,73%
Dinobryon divergens	R1073	0,0293							4,38%
Plagioselmis nannoplanctica	R2162	0,0261							3,91%
Juli									
Planktothrix rubescens	R1617	0,3307	1	1	3	4	1		56,01%
Dinobryon divergens	R1073	0,1165							19,74%
Ceratium hirundinella	R1672	0,0543							9,19%

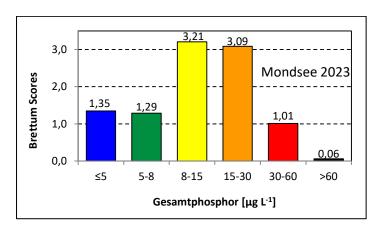
Cyclotella sp.	R0053	0,0216							3,87%
August									
Planktothrix rubescens	R1617	0,2518	1	1	3	4	1		49,12%
Ceratium hirundinella	R1672	0,1064				<u></u>			20,76%
Cyclotella sp.	R0053	0,0352							7,30%
Plagioselmis nannoplanctica	R2162	0,0293							5,72%
Cryptomonas erosa	R1378	0,0180							3,51%
Cryptomonas marssonii	R1382	0,0159							3,10%
September									
Planktothrix rubescens	R1617	0,2861	1	1	3	4	1		48,53%
Dinophyceae indet.	R1708	0,0551					_		9,34%
Ceratium hirundinella	R1672	0,0513							8,71%
Aphanocapsa sp.	R1423	0,0376							6,38%
Cryptomonas erosa	R1378	0,0369							6,26%
Plagioselmis nannoplanctica	R2162	0,0303							5,14%
Peridinium sp.	R1699	0,0227							3,84%
Cyclotella sp.	R0053	0,0170							3,04%
Oktober									
Planktothrix rubescens	R1617	0,2512	1	1	3	4	1		24,84%
Ulnaria delicatissima	R2173	0,1662							16,43%
Fragilaria crotonensis	R0223	0,1605							15,86%
Ceratium hirundinella	R1672	0,0942							9,31%
Cryptomonas erosa	R1378	0,0889							8,79%
Cyclotella sp.	R0053	0,0847							8,47%
Plagioselmis nannoplanctica	R2162	0,0363							3,59%
November									
Planktothrix rubescens	R1617	0,0697	1	1	3	4	1		32,05%
Cyclotella cyclopuncta	R2195	0,0177	7	3			_		8,14%
Rhodomonas lens	R1407	0,0478							21,97%
Plagioselmis nannoplanctica	R2162	0,0188							8,65%
Ceratium hirundinella	R1672	0,0176							8,11%
Cryptomonas erosa	R1378	0,0111							5,10%
Dezember									
Planktothrix rubescens	R1617	0,0617	1	1	3	4	1		39,19%
Cyclotella cyclopuncta	R2195	0,0078	7	3					4,92%
Stephanodiscus neoastraea	R0083	0,0046		1	2	4	3		4,66%
Peridinium willei	R1704	0,0071	1	4	2	1	1	1	4,48%
Rhodomonas lens	R1407	0,0209							13,26%
Cryptomonas erosa	R1378	0,0166							10,54%
Plagioselmis nannoplanctica	R2162	0,0085							5,40%
Ceratium hirundinella	R1672	0,0070							4,42%
Fragilaria crotonensis	R0223	0,0055							3,49%

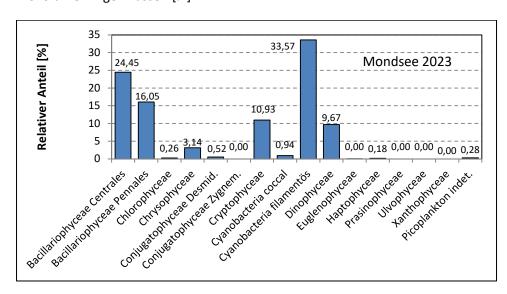

^{*}N.B.:Geringfügige Abweichungen des relativen Anteils einzelner Taxa am Gesamt-Biovolumen[%], im Vergleich zu den Werten in den Prüfprotokollen (4. Quantitative Analyse - Utermöhl-Zählung), ergeben sich aus den in obiger Tabelle bereits abgezogenen Anteilen heterotropher Taxa!

7.3. Grafische Darstellungen


Jahresmittel EQR:

See	MONDSEE						
Jahr		2023					
IC Seentyp	L-AL3 range 2						
Chlorophyll-a [µg L ⁻¹]	2,90						
Biovolumen [mm ³ L ⁻¹]	0,60						
BV für Brettum-Index [mm³ L-							
1]	0,36	60%					
Таха	64						
Taxa für Brettum-Index	37	58%					
Brettum-Index	3,87						
	Ref.wert	EQR	nEQR				
Chlorophyll-a	1,70	0,59	0,72				
Biovolumen	0,25	0,42	0,70				
Brettum-Index	5,19	0,75	0,71				
EQR gesamt	0,708 gut						


Anteil Biovolumen für die Berechnung des Brettum-Index:


Anteil Taxa-Anzahl für die Berechnung des Brettum-Index:

Verteilung Brettum-Scores über die sechs Phosphor-Trophie-Klassen:

Biovolumen Algenklassen [%]:

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-01-16

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-01
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

Allgemeine Angal	ben								
Gewässername		Mono	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer Grundzustand		oli	oligotroph	
Detail WK ID					Höhe Messpui	nkt [m]	48	1	
-	7 !	. : 1		4 T	:	4	_ ! _ ! _ !	-	
					ninen pro Un	tersuchung	sjan	r: 	
Datum, Uhrzeit, Pro			ream, Prüfla						
Datum Probenahme	2023-01	1-16		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Schai		erwirtschaft I	GF
Limnologisch charakteri	istischer	Zeitp	ounkt **	n. a.					
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der	rüflabor gez	zogen		nmerstaai	nation. Beginn der Herb	stzirkulation			
Witterung		<u> </u>	,						
		voi	r der Probenah	me		während de	r Prol	benahme	
Wetter									
Wind									
Niederschlag		Da	tum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
						•			
Hydrographie, Trüb	ung, F	ärbu	ıng, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der P	Probenahme		□ja	☐ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,			
Trübung, Art der Trübung **					Thermokline [m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,5
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	photischen Zo ationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisch	h, organisch, Calcitfä	rbung					
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			ischprobe ntegrierend	e Probe
					wenn Mischprok	oe: Angabe der	Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [µı		•							

Qualitative Anal	yse									
Probennummer		MON202	3-01	Bear	rbeiterIn	Christian Jer	sabek			
Datum der Analyse		2023-06	-14	Pro	benart	☐ lebend		x fixiert		
Quantitative A	nalys	se								
Probennummer		MON	N2023-01		Nachfixieru Probe	ng der quantita	tiven	□ ja		x nein
BearbeiterIn		Chri	stian Jersabek		wenn ja, wa	ann				
Datum der Analyse			3-06-14		Kammertyp)		Utermöh	ı	
Zeitraum zw. Probenał Analyse	nme un	d 154	Tage		Kammervol	lumen		10 ml		
					Ausgegosse Probe	enes Volumen de	er	100 ml		
Quantitative Probe:	Zählstı	rategie	T	1						
Proben-Nr.	Kam	mertyp	Zählstrategie				T -	len / Felde		
			Diagonalen/Felder	(Obj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x	Obj. 100x
MON2023-01	Utern	nöhl	Ganze Kammer		1	2.0	-	20 F	20.5	
			Diagonale/Felder			3 D	2	8, 39 F	30 F	
Diatomeenprobe	2									
Herkunft										
wenn eigene Diatomee	nprobe	:								
Probennummer		MON202	3-01_Diat		Volumen					
Präparation		x Glühpr	äparat	□ ch	emische Ox	idation				
Optische Ausrüs	tung	des Zäh	lmikroskops und D	urch	lichtmik	roskops für	die D	iatomee	en-Analys	e
Zählmikroskop (Marke/Typ)					Zeiss Tel	laval 3, Jena				
Durchlichtmikroskop ja/nein)	(Marl	ke/Typ, F	Phasenkontrast ja/nein	, DIC	Leitz Dia	ıplan (ja/ja)				
Stärkstes Objektiv (Vergrößerung, num	erisch	e Apertu	r)		100x (oil	l, 1,25)				

MON-2023-01-16 Taxon	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [μm³]	FW [µg l¹]	Rel. Anteil [%]
	D I	წ >	Ak	Zell	Ā	Re
Cyanobacteria						
Aphanocapsa sp.						
Chroococcus minutus						
Gomphosphaeria aponina						
Planktothrix rubescens	34	14,838	2,318	2550	5,91	3,44
Pseudanabaena catenata						
Snowella lacustris	11	14,838	0,741	1106	0,82	0,48
Woronichinia naegeliana						
Chlorophyceae						
Botryococcus braunii	3	100,000	0,030	10421	0,31	0,18
Elakatothrix genevensis						
Koliella sp.						
Planctonema lauterbornii						
Conjugatophyceae						
Cosmarium depressum	13	14,838	0,876	4197	3,68	2,14
Chrysophyceae						
Dinobryon divergens						
Dinobryon sertularia						
Kephyrion/Pseudokephyrion sp.						
Pseudopedinella sp.						
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	3	100,000	0,030	51059	1,53	0,89
Glenodinium sp.						
Gymnodinium helveticum	9	14,838	0,607	10218	6,20	3,61
Gymnodinium sp.kl.	5	4,309	1,160	785	0,91	0,53
Peridinium sp.	6	100,000	0,060	54496	3,27	1,90
Cryptophyceae						
Cryptomonas erosa + sp.	21	14,838	1,415	1989	2,82	1,64
Cryptomonas marssonii						
Plagioselmis nannoplanctica	40	0,794	50,374	65	3,27	1,91
Rhodomonas lens	42	0,794	52,892	354	18,70	10,89
Bacillariophyceae						
Asterionella formosa	168	14,838	11,322	378	4,28	2,49
Aulacoseira subarctica	285	1,915	149,042	398	59,30	34,55
Cyclotella cf. comensis	1	2,668	0,506	363	0,18	0,11
Cyclotella cyclopuncta gr.	18	2,668	6,747	363	2,45	1,43
Cyclotella cyclopuncta kl.	26	0,794	32,743	132	4,34	2,53
Cyclotella kuetzingiana	0,3	14,838	0,020	3577	0,07	0,04
Cyclotella radiosa	0,2	14,838	0,013	2908	0,04	0,02

Cyclotella sp.	23	2,668	8,434	229	1,93	1,12
Cymatopleura elliptica	1	100,000	0,010	42523	0,43	0,25
Cymatopleura solea	7	100,000	0,070	23567	1,65	0,96
Fragilaria crotonensis	200	14,838	13,479	1000	13,48	7,85
Staurosira construens						
Stephanodiscus alpinus	0,3	14,838	0,020	2289	0,05	0,03
Stephanodiscus minutulus	3	2,668	1,181	393	0,46	0,27
Stephanodiscus neoastraea kl.	9	14,838	0,620	6133	3,80	2,22
Stephanodiscus neoastraea gr.	27	14,838	1,820	15427	28,07	16,35
Tabellaria flocculosa						
Ulnaria delicatissima						
Ulnaria delicatissima var. angustissima	15	14,838	1,011	3667	3,71	2,16
Gesamt			337,54		171,67	100,00
			10 ³ L ⁻¹		0,172	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-01_Diato

Taxon	Rebecca-		Größenklassen [μm]									
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37				
Aulacoseira subarctica	R0033	53										
Cyclotella cf. comensis	R0042		4	1								
Cyclotella cyclopuncta	R2195	8	33	24								
Cyclotella kuetzingiana	R0046				1	3						
Cyclotella radiosa	R0051				1	1						
Cyclotella sp.	R0053		18									
Stephanodiscus alpinus	R0076			2	3	1						
Stephanodiscus minutulus	R0082	2	4	1								
Stephanodiscus neoastraea	R0083					12	32	6				
Summe Schalen pro Größer	klasse	63	59	28	5	17	32	6				
Gesamtsumme Schalen						210						
Anteil centrischer Diatomeen	am Gesamt-E	Biovolum	en			58,7 %						

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-02-15

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-02
Auftraggeber	Amt der Oberösterreichischen Land	lesregierung	

Allgemeine Angal	oen									
Gewässername		Mon	dsee		Rechtswert		45	4.554		
Messstellenname					Hochwert		29	6.874		
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer Grundzustand			Oligotroph		
Detail WK ID					Höhe Messpunkt [m]			481		
2	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor						
Datum Probenahme	2023-0	2-15	·	Prob	enahme-Team					
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		rwirtschaft IGF		
Limnologisch charakteri			punkt **	n. a.						
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herb	stzirkulation				
Witterung										
-		vo	r der Probenah	me		während de	r Prol	penahme		
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichti	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der F			□ ja □ neir		
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest	t			Sonstiges (Ob Pollenflug)	perflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		5,6		
Algenblüten, Auftriebsfl	Idanhliitan Alittriahetlaekan				Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	ineralisc	ch, organisch, Calcitfäi	rbung						
Probenahme										
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			ischprobe ntegrierende Probe		
					wenn Mischpro	be: Angabe de	r Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [µı		•								

Qualitative Anal	yse									
Probennummer		MON20	23-02	Bear	beiterIn	Christian Jers	sabek			
Datum der Analyse		2023-06	6-14	Prob	enart	☐ lebend x fixiert				
									<u> </u>	
Quantitative A	naly	se								
Probennummer		МО	N2023-02		lachfixierui robe	ng der quantitat	iven	□ ja	x nein	
BearbeiterIn		Chr	istian Jersabek	v	venn ja, wa	ınn				
Datum der Analyse		202	3-06-14	К	ammertyp			Utermöl	hl	
Zeitraum zw. Probenał Analyse	nme un	125	Tage	к	ammervol	umen		10 ml		
					usgegosse robe	nes Volumen de	r	100 ml		
Quantitative Probe:	Zählst	rategie	1	Т						
Proben-Nr.	Kan	nmertyp	Zählstrategie					len / Feld		
			Diagonalen/Felder	Ol	bj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x	Obj. 100x
MON2023-02	Uter	möhl	Ganze Kammer		1	2.5	0.	1 04 5	24.5	
			Diagonale/Felder			3 D		1, 24 F	21 F	
Diatomeenprobe	•									
Herkunft										
wenn eigene Diatomee	nprob	2								
Probennummer		MON20	23-02_Diat	١	/olumen					
Präparation		x Glühp	räparat \square	chemis	che Oxidat	ion				
-	tung	des Zäl	ılmikroskops und D	urchl	ichtmikr	oskops für (die D	iatome	en-Analys	e
Zählmikroskop (Marke/Typ)					Zeiss Tel	aval 3, Jena				
Durchlichtmikroskop ja/nein)	(Mar	ke/Typ,	Phasenkontrast ja/nein	, DIC	Leitz Dia	plan (ja/ja)				
Stärkstes Objektiv (Vergrößerung, num	erisch	e Apertu	r)		100x (oil	, 1,25)				

MON2023-02-15	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanocapsa sp.						
Gomphosphaeria aponina						
Planktothrix rubescens	1790	14,838	120,635	2215	267,26	36,70
Snowella lacustris	2	1,642	1,218	1736	2,12	0,29
Woronichinia naegeliana						
Chlorophyceae						
Botryococcus braunii	11	100,000	0,110	10044	1,10	0,15
Elakatothrix genevensis						
Pediastrum boryanum						
Conjugatophyceae						
Cosmarium depressum	3	14,838	0,202	3827	0,77	0,11
Chrysophyceae						
Mallomonas caudata	1	14,838	0,067	5942	0,40	0,05
Mallomonas sp.						
Dinophyceae						
Ceratium hirundinella	2	100,000	0,020	52330	1,05	0,14
Gymnodinium helveticum	4	14,838	0,270	10931	2,95	0,40
Gymnodinium sp.kl.	2	1,642	1,218	992	1,21	0,17
Peridinium sp.	1	100,000	0,010	35299	0,35	0,05
Cryptophyceae						
Cryptomonas erosa	25	14,838	1,685	2219	3,74	0,51
Cryptomonas rostratiformis	3	14,838	0,202	4939	1,00	0,14
Plagioselmis nannoplanctica	42	0,556	75,561	121	9,13	1,25
Rhodomonas lens	37	0,556	66,565	424	28,24	3,88
Bacillariophyceae						
Asterionella formosa	816	14,838	54,993	395	21,74	2,98
Aulacoseira islandica	32	1,436	21,984	731	16,07	2,21
Aulacoseira subarctica	600	1,436	417,696	416	173,76	23,86
Cyclotella cyclopuncta	17	0,556	29,864	269	8,04	1,10
Cyclotella kuetzingiana	0,5	14,838	0,032	6893	0,22	0,03
Cyclotella radiosa	0,5	14,838	0,032	2908	0,09	0,01
Cyclotella sp.	25	0,556	44,797	132	5,93	0,81
Cymatopleura elliptica						
Cymatopleura solea	10	100,000	0,100	24369	2,44	0,33
Eucocconeis flexella						
Fragilaria crotonensis	297	100,000	2,971	794	2,36	0,32
Gyrosigma sp.						
Melosira varians						
Staurosira construens	467	100,000	4,667	648	3,02	0,42
Stephanocostis chantaica						

Stephanodiscus alpinus	3	14,838	0,178	3140	0,56	0,08
Stephanodiscus minutulus	42	0,556	74,661	201	15,00	2,06
Stephanodiscus neoastraea gr.	117	14,838	7,885	17244	135,97	18,67
Stephanodiscus neoastraea kl.	20	14,838	1,375	6899	9,48	1,30
Tabellaria flocculosa	90	100,000	0,900	1110	1,00	0,14
Ulnaria delicatissima var. angustissima	70	14,838	4,718	2821	13,31	1,83
Ulnaria ulna						
Gesamt			934,62		728,32	100,00
			10 ³ L ⁻¹		0,728	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-02_Diato

Taxon	Rebecca-			Größ	enklassen	[µm]			
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37	
Aulacoseira islandica	R0025	1	7						
Aulacoseira subarctica	R0033	88							
Cyclotella cyclopuncta	R2195	1	28	2					
Cyclotella kuetzingiana	R0046					3	1		
Cyclotella radiosa	R0051				1	3			
Cyclotella sp.	R0053	11	32						
Stephanodiscus alpinus	R0076				5	2			
Stephanodiscus minutulus	R0082	9	36						
Stephanodiscus neoastraea	R0083					28	96	34	
Summe Schalen pro Größen	klasse	110	103	2	6	36	97	34	
			•						
Gesamtsumme Schalen						388			
Anteil centrischer Diatomeen	am Gesamt-E	Biovolum	en		50,1 %				

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-03-06

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-03
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

Allgemeine Angal	ben								
Gewässername		Mon	dsee		Rechtswert		45	54.554	
Messstellenname					Hochwert		29	96.874	
(GZÜV-)Messstellen_ID					Median		31	L	
Detail WK Name					Trophischer C	Grundzustand	oli	igotroph	
Detail WK ID					Höhe Messpu	nkt [m]	48	31	
					minen pro Un	itersuchung	sjan	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla						
Datum Probenahme	2023-03	3-06		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		erwirtschaft	IGF
Limnologisch charakter			punkt **	n. a.		·			
* wenn Proben nicht vom selben F ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstag	nation, Beginn der Herb	ostzirkulation			
Witterung									
_		vo	or der Probenah	me		während de	r Pro	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
Hydrographie, Trüb	ung, F	ärbı	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der I			□ja	☐ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	oerflächenfilm,			
Trübung, Art der Trübung **					Thermokline [[m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,7
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	uphotischen Zo sationsebene)	ne		·
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfä	rbung				1	
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis		en	0 – 21 m		Art der Probena quantitativen Pr			lischprobe ntegrieren	
					wenn Mischpro	be: Angabe de	r Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [µ)							

Qualitative Anal	yse								
Probennummer		MON202	3-03	BearbeiterIn	Christian Jers	sabek			
Datum der Analyse		2023-06	-16	Probenart	☐ lebend x fixiert				
Quantitative A	nalys	se							
Probennummer		МОМ	N2023-03	Nachfixieru Probe	ıng der quantitat	iven	□ ja	x nei	n
BearbeiterIn		Chri	stian Jersabek	wenn ja, w	ann				
Datum der Analyse		2023	3-06-16	Kammertyp)		Utern	nöhl	
Zeitraum zw. Probenal Analyse	hme un	d 106	Tage	Kammervo	lumen		10 ml		
				Ausgegosse	enes Volumen de	r Probe	100 m	nl	
0	771.1 .								
Quantitative Probe:	Zanist	rategie		1	Amachi D	ioconolor	. / Folds		
Proben-Nr.	Kam	mertyp	Zählstrategie Diagonalen/Felder	Obi. 5x	Anzahl Diagonalen Obj. 5x Obj. 10x Obj.		-	Obj. 40x	Obj. 100x
MON2023-03	Uterr	nöhl	Ganze Kammer	1	00j. 10A	0.0,1		0.0). 40.0	
			Diagonale/Felder		3 D	24,2	27 F	18 F	
								•	
Diatomeenprobe	9								
Herkunft									
wenn eigene Diatomee	enprobe	?							
Probennummer		MON202	3-03_Diat	Volumen					
Präparation		x Glühpr	äparat [☐ chemische Oxid	dation				
Optische Ausrüs	tung	des Zäh	lmikroskops und D	urchlichtmik	roskops für	die Dia	tome	en-Analys	e
Zählmikroskop (Marke/Typ)				Zeiss Tela	val 3, Jena				
Durchlichtmikroskop DIC ja/nein)	o (Mar	ke/Typ, P	Phasenkontrast ja/nein	Leitz Diap	lan (ja/ja)	•			
Stärkstes Objektiv (Vergrößerung, num	nerisch	e Apertu	r)	100x (oil,	1,25)				

	te ien	tes nij	ınz 1	nen 	[-1]	teil
MON2023-03-06	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Chroococcus minutus						
Gomphosphaeria aponina						
Planktothrix rubescens	1380	14,838	93,004	2184	203,15	24,06
Chlorophyceae						
Botryococcus braunii	8	100,000	0,080	9604	0,77	0,09
Conjugatophyceae						
Cosmarium depressum	10	14,838	0,674	3775	2,54	0,30
Chrysophyceae						
Dinobryon sertularia						
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	8	100,000	0,080	54124	4,33	0,51
Gymnodinium helveticum	2	14,838	0,135	8797	1,19	0,14
Gymnodinium sp.kl.	6	1,847	3,249	1415	4,60	0,54
Cryptophyceae						
Cryptomonas erosa	15	14,838	1,011	2183	2,21	0,26
Cryptomonas marssonii						
Cryptomonas rostratiformis	3	14,838	0,202	4939	1,00	0,12
Plagioselmis nannoplanctica	52	0,476	109,143	112	12,23	1,45
Rhodomonas lens	36	0,476	75,561	487	36,78	4,36
Bacillariophyceae						
Asterionella formosa	1560	14,838	105,134	429	45,13	5,35
Aulacoseira islandica	36	1,642	21,801	839	18,29	2,17
Aulacoseira subarctica	1366	1,642	832,086	347	288,58	34,18
Cyclotella cyclopuncta						
Cyclotella kuetzingiana	1	14,838	0,095	3498	0,33	0,04
Cyclotella radiosa	1	14,838	0,063	2908	0,18	0,02
Cyclotella sp.	41	0,476	85,635	161	13,77	1,63
Cymatopleura elliptica	3	100,000	0,030	39335	1,18	0,14
Cymatopleura solea	31	100,000	0,310	26542	8,23	0,97
Diatoma sp.						
Fragilaria crotonensis	175	14,838	11,794	720	8,49	1,01
Staurosira construens	536	100,000	5,365	400	2,15	0,25
Stephanodiscus alpinus						
Stephanodiscus minutulus	10	0,476	21,409	166	3,55	0,42
Stephanodiscus neoastraea gr.	164	14,838	11,053	14105	155,90	18,47
Stephanodiscus neoastraea kl.	45	14,838	3,009	5426	16,33	1,93
Tabellaria flocculosa	17	100,000	0,170	2953	0,50	0,06
Ulnaria delicatissima var. angustissima	83	14,838	5,594	2221	12,42	1,47

Ulnaria ulna	2	100,000	0,020	20599	0,41	0,05
Gesamt			1386,71		844,22	100,00
			10 ³ L ⁻¹		0,844	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-03_Diato

Taxon	Rebecca-		Größenklassen [μm]							
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37		
Aulacoseira islandica	R0025	1	8							
Aulacoseira subarctica	R0033	114								
Cyclotella kuetzingiana	R0046				1	2				
Cyclotella radiosa	R0051				1	3				
Cyclotella sp.	R0053	8	45							
Stephanodiscus minutulus	R0082	10	15							
Stephanodiscus neoastraea	R0083					53	117	4		
Summe Schalen pro Größen	klasse	133	68	0	2	58	117	4		
Gesamtsumme Schalen		382								
Anteil centrischer Diatomeen	am Gesamt-E	Biovolum	en		58,9 %					

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-04-03

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-04
Auftraggeber	Amt der Oberösterreichischen Land	lesregierung	

Allgemeine Angak	en								
Gewässername		Mon	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer (Grundzustand	OI	igotroph	
Detail WK ID					Höhe Messpu	nkt [m]	48	1	
-	•	•••		4 T		4 1	- • - •		
	u jewe	elis r	mindestens 4	4 i eri	minen pro Un	itersuchung	sjan	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla						
Datum Probenahme	2023-04	4-03		Prob	enahme-Team	2			
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft	IGF
Limnologisch charakteri			punkt **	Frühjah	nrszirkulation				
* wenn Proben nicht vom selben Pr ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herk	ostzirkulation			
Witterung									
		vo	r der Probenah	me		während de	r Prol	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
Hydrographie, Trüb				ung					
Hochwassereinfluss (der	r wichtig	gsten	Zubringer)		-1			,	
vor der Probenahme			ja □	nein	während der l			□ ja	☐ nein
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest				Pollenflug)	perflächenfilm,			
Trübung, Art der Trübung **					Thermokline	[m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,7
Algenblüten, Auftriebsflo	ocken		ja □	nein		ıphotischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäi	rbung				•	
Probenahme									
Probenahmetiefe der qua Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen P			lischprobe ntegrieren	
-					wenn Mischpro	be: Angabe de	Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [µr		•							

Qualitative	Analys	se								
Probennumme	r N	10N2023-04		Ве	arbeiterIn	Christian Jers	abek			
Datum der Ana	lyse 2	023-23-11		Pr	Probenart ☐ lebend x fixie					
Quantitativ	e Anal	yse								
Probennumme	Probennummer MON2023-04					ıng der quantitat	iven	□ ja		x nein
BearbeiterIn		Christian Je	ersabek		wenn ja, w	ann				
Datum der Ana	•	2023-23-11			Kammerty	o		Utermöh	ıl	
Zeitraum zw. Pi ahme und Anal		236 Tage			Kammervo			10 ml		
					Ausgegosse Probe	enes Volumen de	r	100 ml		
Quantitative	Probe: Z	ählstrategie		1						
Proben-Nr.	Kan	nmertyp	Zählstrategie Diagonalen/Felder					len / Felde	1	
	Pöhron	kammer	Diagonalen/ Feider		Obj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x	
MON2023-04	nach Ut		Ganze Kammer		1					
			Diagonale/Felder			3 D	2	7,33 F	10,18 F	
Diatomeen	probe									
Herkunft										
wenn eigene Di	iatomeen	probe								
Probennumme	r N	1ON2023-04_I	Diat		Volumen					
Präparation	х	Glühpräpara	t □ chen	nisch	e Oxidation					
Optische A	usrüstı	ıng des Zä	hlmikroskops und D	urcl	hlichtmikı	roskops für d	lie Di	atomee	n-Analyse	e
Zählmikrosko (Marke/Typ)	р				Zeiss Tel	laval 3, Jena				
Durchlichtmik ja/nein)	kroskop (Marke/Typ,	Phasenkontrast ja/nein,	, DIC	Leitz Diaplan (ja/ja)					
Stärkstes Obj (Vergrößerun		rische Apert	ur)		100x (oil	 l, 1,25)				

MON2023-04-03	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Planktothrix rubescens	138	1,847	74,451	2226	165,72	19,90
Chlorophyceae						
Botryococcus braunii	3	100,000	0,030	9587	0,29	0,03
Elakatothrix genevensis						
Conjugatophyceae						
Cosmarium depressum	14	14,838	0,944	3698	3,49	0,42
Xanthophyceae (Gelbgrüne Algen)						
Tetraedriella jovetii						
Chrysophyceae						
Mallomonas caudata	1	14,838	0,067	4700	0,32	0,04
Mallomonas sp.						
Pseudopedinella sp.						
Haptophyceae						
Chrysochromulina parva	10	0,476	20,989	57	1,19	0,14
Dinophyceae						
Ceratium hirundinella	8	100,000	0,080	50174	4,01	0,48
Gymnodinium helveticum	81	14,838	5,459	12736	69,53	8,35
Gymnodinium sp.kl.	4	2,257	1,772	956	1,69	0,20
Peridinium sp.	_					
Peridinium willei	7	100,000	0,070	68064	4,76	0,57
Cryptophyceae						
Cryptomonas erosa	2	2,257	0,886	2160	1,91	0,23
Cryptomonas rostratiformis						
Plagioselmis nannoplanctica	76	0,476	159,517	80	12,72	1,53
Rhodomonas lens	45	0,476	94,451	460	43,43	5,22
Bacillariophyceae				400	40400	40.00
Asterionella formosa	704	1,847	381,187	433	164,92	19,80
Aulacoseira subarctica	450	1,847	243,656	305	74,25	8,92
Cyclotella cf. comensis	1	0,476	1,700	193	0,33	0,04
Cyclotella cyclopuncta	3	0,476	6,800	229	1,56	0,19
Cyclotella radiosa	5	14,838	0,337	2512	0,85	0,10
Cyclotella sp.	65	0,476	136,009	193	26,23	3,15
Cymatopleura elliptica	6	100,000	0,060	83910	5,03	0,60
Cymatopleura solea	37	100,000	0,370	24964	9,24	1,11
Cymbella lanceolata						
Diatoma ehrenbergii	4.405	44.000	400 704	00-	04.05	44.00
Fragilaria crotonensis	1495	14,838	100,721	937	94,35	11,33
Melosira varians	39	100,000	0,394	7592	2,99	0,36
Staurosira construens	192	100,000	1,920	485	0,93	0,11
Stephanocostis chantaica	1	0,476	1,700	54	0,09	0,01

Stephanodiscus alpinus	3	14,838	0,202	3140	0,63	0,08
Stephanodiscus minutulus	11	0,476	23,802	286	6,81	0,82
Stephanodiscus neoastraea	101	14,838	6,807	12268	83,51	10,03
Tabellaria fenestrata	16	100,000	0,160	2535	0,41	0,05
Tabellaria flocculosa	113	100,000	1,130	2818	3,18	0,38
Ulnaria delicatissima var. angustissima	33	1,847	17,868	2281	40,75	4,89
Ulnaria ulna	6	100,000	0,060	20838	1,25	0,15
Picoplankton < 5 μm						
Picoplankton indet.	120	0,265	453,364	14	6,41	0,77
Gesamt			1736,96		832,79	100,00
			10 ³ L ⁻¹		0,833	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-04_Diato

Taxon	Rebecca-			Größ	enklassen	[µm]		
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Aulacoseira subarctica	R0033	28						
Cyclotella cf. comensis	R0042		3					
Cyclotella cyclopuncta	R2195	1	7	2				
Cyclotella radiosa	R0051			1	4	3		
Cyclotella sp.	R0053	11	56	6				
Melosira varians	R0062		3	11				
Stephanocostis chantaica	R0075	5						
Stephanodiscus alpinus	R0076			2	8	1		
Stephanodiscus minutulus	R0082	4	17					
Stephanodiscus neoastraea	R0083					21	104	3
Summe Schalen pro Größen	klasse	49	86	22	12	25	104	3
Gesamtsumme Schalen			301					
Anteil centrischer Diatomeen		23,7 %						

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-05-10

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-05
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

Allgemeine Angal	oen								
Gewässername		Mon	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer C	Grundzustand	oli	gotroph	
Detail WK ID					Höhe Messpu	nkt [m]	48	1	
2	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-05	5-10		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Schai		erwirtschaft IC	GF
Limnologisch charakteri			punkt **	n.a.					
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagi	nation, Beginn der Herb	stzirkulation			
Witterung									
		vo	or der Probenah	me		während de	r Prol	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der F			□ja	□ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ok Pollenflug)	erflächenfilm,			
Trübung, Art der Trübung **					Thermokline [m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			4,6
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäl	rbung					
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			lischprobe ntegrierend	e Probe
					wenn Mischpro	be: Angabe der	Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [µı		•							

Qualitative	Analys	se								
Probennummer		MON2023-05		Bearbeite	rln	Christian Jers	abek			
Datum der Analy	yse	2023-12-05		Probenar	t	☐ lebend		x fixiert		
Quantitativ	e Anal	yse								
Probennummer		MON2023-	05	Nach Probe		g der quantitati	ven	□ ja		x nein
BearbeiterIn		Christian Je	ersabek	wenn	ja, wan	ın				
Datum der Analy	yse	2023-12-05	j	Kamr	nertyp			Utermöh	ıl	
Zeitraum zw. Pro ahme und Analy		211 Tage		Kamr	nervolu	men		10 ml		
				Ausgo Probe	_	es Volumen dei	•	100 ml		
Quantitative P	robe: Z	ählstrategie								
Proben-Nr. Kammertyp Zählstrategie Anzahl Diagonalen / Felder										
Diagonalen/Felder Obj. 5x Obj. 10x Obj. 25x Obj. 40x										
MON2023-05 Röhrenkammer nach Utermöhl Ganze Kammer 1										
			Diagonale/Felder			3 D		21 F	10, 15 F	
Diatomeen	orobe									
Herkunft										
wenn eigene Dic	itomeen	probe						_		
Probennummer	1	MON2023-05_I	Diat	Volu	men					
Präparation	2	x Glühpräpara	t □ chem	nische Oxida	ation					
Optische Au		ıng des Zäh	lmikroskops und Du			•	e Dia	tomeen	ı-Analyse	
(Marke/Typ)				Ze	iss Tela	ıval 3, Jena				
Durchlichtmiki ja/nein)	roskop (Marke/Typ, F	Phasenkontrast ja/nein, [DIC Le	itz Diap	olan (ja/ja)				
Stärkstes Obje (Vergrößerung		rische Apertu	r)	10	Ox (oil,	1,25)				

Chlorophyceae Botryococcus braunii 21 100,000 0,210 10678 2,24 0,24 Elakatothrix genevensis 21 100,000 0,210 10678 2,24 0,24 Elakatothrix genevensis	MON2023-05-10	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Chlorophyceae Botryococcus braunii 21 100,000 0,210 10678 2,24 0,24 Elakatothrix genevensis 2 100,000 0,210 10678 2,24 0,24 Conjugatophyceae Conjugatophyceae 6 14,838 0,404 3853 1,56 0,17 Staurastrum cingulum 2 100,000 0,020 8002 0,16 0,02 Xanthophyceae 7 10,000 0,020 8002 0,16 0,02 Xanthophyceae 7 1,436 36,897 210 7,76 0,84 Dinobryon divergens 53 1,436 36,897 210 7,76 0,84 Mallomonas caudata 5 14,838 0,337 4631 1,56 0,17 Mallomonas sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 1 1,436 8,354 1544 12,89 1,56 Gymnochinium parva 1 14,838 0,674 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Botryococcus braunii		1420	14,838	95,699	2506	239,81	25,89
Conjugatophyceae Cosmarium depressum 6							
Conjugatophyceae 6 14,838 0,404 3853 1,56 0,17 Staurastrum cingulum 2 100,000 0,020 8002 0,16 0,02 Xanthophyceae Tetraedriella jovetii Chrysophyceae Dinobryon divergens 53 1,436 36,897 210 7,76 0,86 Dinobryon sociale Mallomonas caudata 5 14,838 0,337 4631 1,56 0,17 Mallomonas elongata Mallomonas sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. Haptophyceae Chrysochromulina parva Ceratium hirundinella 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,60 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium willei Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,		21	100,000	0,210	10678	2,24	0,24
Cosmarium depressum							
Staurastrum cingulum 2 100,000 0,020 8002 0,16 0,000 Xanthophyceae Tetraedriella jovetii							
Xanthophyceae Tetraedriella jovetii Chrysophyceae Dinobryon divergens 53 1,436 36,897 210 7,76 0,84 0,37 4631 1,56 0,15	•		-	•			0,17
Tetraedriella jovetii	Staurastrum cingulum	2	100,000	0,020	8002	0,16	0,02
Chrysophyceae 53 1,436 36,897 210 7,76 0,84 Dinobryon sociale Mallomonas caudata 5 14,838 0,337 4631 1,56 0,17 Mallomonas elongata Mallomonas sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 2 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 4 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 4 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 4 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 6 100,000 0,260 53699 13,96 1,55 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. + willei 6 100,000	1 7						
Dinobryon divergens 53	Tetraedriella jovetii						
Dinobryon sociale Mallomonas caudata 5	Chrysophyceae						
Mallomonas caudata 5 14,838 0,337 4631 1,56 0,17 Mallomonas elongata Mallomonas sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. Pseudopedinella sp. Enaptophyceae Chrysochromulina parva 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,60 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 15 14,838 1,011 2116 2,14 0,23 Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,55 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Dinobryon divergens	53	1,436	36,897	210	7,76	0,84
Mallomonas elongata 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 12 1,436 8,354 1544 12,89 1,38 Haptophyceae Chrysochromulina parva 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei 7 14,838 1,011 2116 2,14 0,23 Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Dinobryon sociale						
Mallomonas sp. 12 1,436 8,354 1544 12,89 1,38 Pseudopedinella sp. 4 1,436 8,354 1544 12,89 1,38 Haptophyceae Chrysochromulina parva 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,57 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei 7 14,838 1,011 2116 2,14 0,23 Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Mallomonas caudata	5	14,838	0,337	4631	1,56	0,17
Pseudopedinella sp.	Mallomonas elongata						
Chrysochromulina parva Chrysochromulina parva Ceratium hirundinella 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88 10 10 10 10 10 10 10	Mallomonas sp.	12	1,436	8,354	1544	12,89	1,39
Chrysochromulina parva Dinophyceae Ceratium hirundinella 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei 7 14,838 1,011 2116 2,14 0,23 Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Pseudopedinella sp.						
Dinophyceae 26 100,000 0,260 53699 13,96 1,57 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei 7 14,838 1,011 2116 2,14 0,23 Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Haptophyceae						
Ceratium hirundinella 26 100,000 0,260 53699 13,96 1,56 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,55 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Chrysochromulina parva						
Ceratium hirundinella 26 100,000 0,260 53699 13,96 1,56 Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,55 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Dinophyceae						
Gymnodinium helveticum 10 14,838 0,674 9080 6,12 0,66 Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptophyceae Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Ceratium hirundinella	26	100,000	0,260	53699	13,96	1,51
Gymnodinium sp. 7 1,436 4,873 992 4,83 0,52 Peridinium sp. + willei 6 100,000 0,060 81791 4,91 0,53 Peridinium willei Cryptophyceae Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Gymnodinium helveticum	10	14,838	0,674	9080	6,12	0,66
Peridinium willei Cryptophyceae 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Gymnodinium sp.	7	1,436	4,873	992	4,83	0,52
Peridinium willei Cryptophyceae 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Peridinium sp. + willei	6	100,000	0,060	81791	4,91	0,53
Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,53 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Peridinium willei					·	
Cryptomonas erosa + sp. 15 14,838 1,011 2116 2,14 0,23 Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,53 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	Cryptophyceae						
Cryptomonas rostratiformis 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88		15	14.838	1.011	2116	2.14	0,23
Plagioselmis nannoplanctica 93 0,397 234,238 99 23,28 2,57 Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	l **		,	,		,	,
Rhodomonas lens 96 0,397 241,794 417 100,74 10,88	l **	93	0.397	234.238	99	23.28	2,51
	,						10,88
	Bacillariophyceae		,	,		,	,
Achnanthes sp.							
	·	56	14.838	3.774	423	1.60	0,17
			-				1,10
							0,38
							13,60
				•			0,46
			-	•			0,37
			-	· ·			1,43
Diatoma ehrenbergii	· · · · · · · · · · · · · · · · · · ·		5,551	35,500	. 02	. 5,25	.,.5
Eunotia sp.	_						

					mm³ L ⁻¹	
			10 ³ L ⁻¹		0,926	%
Gesamt			2224,45		926,13	100,00
Picoplankton indet.	107	0,265	404,250	12	4,65	0,50
Picoplankton < 5 µm						
Ulnaria ulna	5	100,000	0,050	16330	0,82	0,09
Ulnaria sp.	13	1,436	9,050	626	5,66	0,61
Ulnaria delicatissima var. angustissima	4	14,838	0,270	3724	1,00	0,11
Ulnaria delicatissima	3	1,436	2,088	429	0,90	0,10
Tabellaria flocculosa	500	100,000	5,000	3167	15,84	1,71
Tabellaria fenestrata	64	100,000	0,640	1086	0,69	0,08
Stephanodiscus neoastraea	15	14,838	0,991	10598	10,50	1,13
Staurosira construens						
Fragilaria crotonensis	5486	14,838	369,704	817	301,92	32,60

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-05_Diato

Anteil centrischer Diatomeen am Gesamt-Biovolumen

Taxon	Rebecca-	Größenklassen [µm]							
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37	
Aulacoseira subarctica	R0033	56							
Cyclotella cf. comensis	R0042	2	14						
Cyclotella cyclopuncta	R2195	13	114	7					
Cyclotella ocellata	R0048				8	19			
Cyclotella radiosa	R0051				13	8			
Cyclotella sp.	R0053	21	43						
Stephanodiscus neoastraea	R0083					9	17		
Summe Schalen pro Größen	klasse	92	171	7	21	36	17		
			•	•	1				
Gesamtsumme Schalen		344							

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

18,5 %

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-06-05

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-06
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

Allgemeine Angal	ben								
Gewässername		Mon	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer C	Grundzustand	oli	igotroph	
Detail WK ID					Höhe Messpu	nkt [m]	48	31	
_	_								
	Zu jewe	eils i	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-0	6-05		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Schar		erwirtschaft IG	F
Limnologisch charakteri			punkt **	Begir	n der Sommersta	gnation			
* wenn Proben nicht vom selben F ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstagi	nation, Beginn der Herb	stzirkulation			
Witterung									
		VO	or der Probenah	me		während de	r Pro	benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der F			□ja	□ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest	:			Sonstiges (Ob Pollenflug)	perflächenfilm,			
Trübung, Art der Trübung **					Thermokline [m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		:	2,0
Algenblüten, Auftriebsfl	ocken		ja 🗆	nein	Grenze der eu [m] (Kompens	photischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mi	neralisc	ch, organisch, Calcitfä	rbung					
Probenahme									
Probenahmetiefe der qu		en	0 – 21 m		Art der Probena			lischprobe	
Probe [m; vonbis]	l		2 2		quantitativen Pi			ntegrierende	Probe
Maschenweite für die gu	ı alitativa				wenn Mischpro	be: Angabe der	Tiefe	enstuten	
Phytoplankton-Probe [µ		•							

Qualitative	Analy	yse								
Probennummer		MON2023-06		Be	arbeiterIn	Christian Jers	abek			
Datum der Analy	/se	2023-12-05		Pro	benart ☐ lebend x fixiert					
Quantitative	e Ana	alyse								
Probennummer		MON2023-	06		Nachfixierur Probe	ng der quantitat	iven	□ ja		x nein
BearbeiterIn		Christian Je	ersabek		wenn ja, wa	nn				
Datum der Analy		2023-12-05	; 		Kammertyp			Utermöh	ıl	
Zeitraum zw. Pro ahme und Analy		186 Tage			Kammervolu	umen		10 ml		
					Ausgegossei Probe	nes Volumen de	r	100 ml		
Quantitative P	robe:	Zählstrategie								
Proben-Nr.		Cammertyp	Zählstrategie		T	Anzahl D	iagona	len / Felde	er	1
			Diagonalen/Felder Obj. 5x Obj. 10x Obj. 25x Obj. 40x							
MON2023-06		enkammer Utermöhl	Ganze Kammer		1					
			Diagonale/Felder			3 D	2	0,21 F	9 F	
Diatomeenp	robe	<u> </u>								
Herkunft										
wenn eigene Did	tomee	nprobe								
Probennummer		MON2023-06_I	Diat		Volumen					
Präparation		x Glühpräpara	t □ chen	nisch	e Oxidation					
Optische Au	ısrüst	tung des Zäh	lmikroskops und Du	rchl	lichtmikro	skops für di	e Dia	tomeer	n-Analyse	
Zählmikroskop (Marke/Typ)					Zeiss Telav	val 3, Jena				
Durchlichtmiki ja/nein)	oskop	(Marke/Typ, F	Phasenkontrast ja/nein, [OIC	Leitz Diapl	an (ja/ja)				
Stärkstes Obje (Vergrößerung		erische Apertu	r)		100x (oil, 1	1,25)				

MON2023-06-05	Gezählte ndividuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
	ο <u>ς</u>	8 ×	Ab []	Zell	Ĕ	Re
Cyanobacteria						
Planktothrix rubescens	2310	14,838	155,680	2123	330,45	48,65
Chlorophyceae						
Botryococcus braunii	30	100,000	0,300	10238	3,07	0,45
Elakatothrix genevensis						
Pediastrum boryanum						
Conjugatophyceae						
Cosmarium depressum	12	14,838	0,809	3775	3,05	0,45
Staurastrum cingulum	4	100,000	0,040	7921	0,32	0,05
Chrysophyceae						
Dinobryon crenulatum						
Dinobryon divergens	207	1,436	144,105	203	29,30	4,31
Mallomonas elongata	6	14,838	0,404	2620	1,06	0,16
Mallomonas sp.						
Haptophyceae						
Chrysochromulina parva	22	0,238	92,352	58	5,37	0,79
Dinophyceae						
Ceratium hirundinella	5	100,000	0,050	57668	2,88	0,42
Gymnodinium helveticum	18	14,838	1,213	9155	11,11	1,64
Peridinium sp.	3	100,000	0,030	36250	1,09	0,16
Cryptophyceae						
Cryptomonas erosa + sp.	19	14,838	1,280	2296	2,94	0,43
Cryptomonas rostratiformis	2	14,838	0,135	4939	0,67	0,10
Cryptomonas sp.						
Plagioselmis nannoplanctica	76	0,238	319,034	82	26,12	3,85
Rhodomonas lens	13	0,238	54,572	267	14,57	2,14
Bacillariophyceae						
Asterionella formosa	48	100,000	0,480	460	0,22	0,03
Aulacoseira subarctica	28	14,838	1,872	266	0,50	0,07
Cyclotella bodanica						
Cyclotella cyclopuncta	401	0,238	1683,324	138	232,03	34,16
Cyclotella distinguenda	0,4	14,838	0,027	1060	0,03	0,00
Cyclotella ocellata	12	14,838	0,782	2154	1,68	0,25
Cyclotella radiosa	26	14,838	1,752	2070	3,63	0,53
Cyclotella sp.						
Fragilaria crotonensis	129	100,000	1,286	871	1,12	0,16
Melosira varians						
Stephanodiscus alpinus	8	14,838	0,539	3140	1,69	0,25
Stephanodiscus neoastraea						
Stephanodiscus neoastraea	2	14,838	0,108	8163	0,88	0,13
Tabellaria fenestrata	8	100,000	0,080	1626	0,13	0,02

Tabellaria flocculosa	12	100,000	0,120	2458	0,29	0,04
Ulnaria delicatissima var. angustissima						
Ulnaria sp.	12	1,368	8,772	569	4,99	0,73
Gesamt			2469,15		679,18	100,00
Cocami			,		0.0,.0	100,00
			10 ³ L ⁻¹		0,679	%

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-06_Diato

Taxon	Rebecca-		Größenklassen [µm]								
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37			
Aulacoseira subarctica	R0033	12									
Cyclotella cyclopuncta	R2195	45	151	7							
Cyclotella distinguenda	R2196			2	1						
Cyclotella ocellata	R0048			3	17	1					
Cyclotella radiosa	R0051				20	5					
Stephanodiscus alpinus	R0076				11	3					
Stephanodiscus neoastraea	R0083					5	2				
Summe Schalen pro Größen	klasse	57	151	12	49	14	2				
Gesamtsumme Schalen	Gesamtsumme Schalen										
Anteil centrischer Diatomeen		35,4 %									

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-07-03

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-07	
Auftraggeber	Amt der Oberösterreichischen Land	esregierung		

Allgemeine Angak	en									
Gewässername		Mon	dsee		Rechtswert		45	4.554		
Messstellenname					Hochwert		29	6.874		
(GZÜV-)Messstellen_ID					Median		31	-		
Detail WK Name					Trophischer C	Grundzustand	oli	igotroph		
Detail WK ID					Höhe Messpu	nkt [m]	48	31		
Z	'u jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor						
Datum Probenahme	2023-07	3-07-03 Prob e			enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft	IGF	
Limnologisch charakteri			punkt **	Somr	Sommerstagnation					
* wenn Proben nicht vom selben Prüflabor gezogen ** Frühjahrszirkulation, Beginn der Sommerstagnation, Höhepunkt der Sommerstagnation, Beginn der Herbstzirkulation										
Witterung										
vor der Probenahme			me	während der Pro			robenahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (der	r wichtiç	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der I			□ ja	☐ nein	
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest	:			Sonstiges (Ob Pollenflug)	perflächenfilm,				
Trübung, Art der Trübung **					Thermokline [[m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			3,2	
Algenblüten, Auftriebsflo	ocken		ja □	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäi	rbung						
Probenahme										
Probenahmetiefe der qua Probe [m; vonbis]		en	0 – 21 m		Art der Probenahme der guantitativen Probe			x Mischprobe □ integrierende Probe		
					wenn Mischpro	be: Angabe de	r Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [µr)			-					

Qualitative	Analy	se								
Probennummer		MON2023-07		Be	arbeiterIn	Christian Jers	abek			
Datum der Analy	yse	2024-01-02		Pro	obenart	☐ lebend		x fixiert	i	
Quantitative	e Ana	lyse								
Probennummer MON2023-07					Nachfixieru Probe	ng der quantitati	iven	□ ja		x nein
BearbeiterIn		Christian Je	ersabek		wenn ja, wa	ann				
Datum der Analy		2024-01-02			Kammertyp			Utermöh	nl	
Zeitraum zw. Pro me und Analyse	obenah-	185 Tage			Kammervol			10 ml		
					Ausgegosse Probe	nes Volumen de	r	100 ml		
Quantitative P	robe: Z	ählstrategie		•						
Proben-Nr.	Ka	ammertyp	Zählstrategie Anzahl Diagonale					len / Felde	er	
			Diagonalen/Felder		Obj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x	
MON2023-07		nkammer Utermöhl	kammer termöhl Ganze Kammer		1					
			Diagonale/Felder		3 D	3 D		21 F	12, 18 F	
Diatomeenp	orobe									
Herkunft										
wenn eigene Dia	tomeer	•								
Probennummer		MON2023-07_I	Diat		Volumen					
Präparation		x Glühpräpara	t 🗆 chem	nisch	e Oxidation					
Optische Au	ısrüstı	ung des Zäh	lmikroskops und Du	rchl	lichtmikro	skops für di	e Dia	tomeer	n-Analyse	
Zählmikroskop (Marke/Typ))				Zeiss Tela	val 3, Jena				
Durchlichtmikı ja/nein)	roskop	(Marke/Typ, F	Phasenkontrast ja/nein, [OIC	Leitz Diap	lan (ja/ja)				
Stärkstes Obje (Vergrößerung		erische Apertu	r)		100x (oil,	1,25)				

MON2023-07-03	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanizomenon flos-aquae	43	14,838	2,898	641	1,86	0,31
Planktothrix rubescens	2220	14,838	149,614	2210	330,69	55,60
Snowella lacustris						
Chlorophyceae						
Botryococcus braunii	7	100,000	0,070	9931	0,70	0,12
Coenochloris sp.						
Elakatothrix genevensis						
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii						
Planktosphaeria gelatinosa						
Planktosphaeria sp.						
Pseudosphaerocystis lacustris	32	100,000	0,320	524	0,17	0,03
Sphaerocystis schroeteri						
Tetrachlorella incerta						
Conjugatophyceae						
Cosmarium depressum	12	14,838	0,809	3775	3,05	0,51
Chrysophyceae						
Bitrichia chodatii						
Dinobryon crenulatum		o 4=0	- 0.4.000		4.40 =0	40 =0
Dinobryon divergens	269	0,476	564,606	206	116,53	19,59
Dinobryon sociale		44.000	0.007	4740	0.00	0.05
Mallomonas caudata	1	14,838	0,067	4742	0,32	0,05
Mallomonas elongata	10	14,838	0,674	2512	1,69	0,28
Mallomonas sp.	15	1,642	9,137	1178	10,76	1,81
Haptophyceae	24	0.240	00 440	00	2.05	0.00
Chrysochromulina parva	21	0,318	66,116	60	3,95	0,66
Dinophyceae	0.4	400.000	0.040	F7700	E 4 00	0.40
Ceratium hirundinella	94	100,000	0,940	57729	54,26	9,12
Dinophyceae indet.	2	1 126	2.000	1202	2.70	0.45
Glenodinium sp.	3 7	1,436 14,838	2,088	1292	2,70	0,45
Gymnodinium helveticum	·	14,030	0,472	9224	4,35	0,73
Gymnodinium sp.	12	100.000	0.420	26020	4.60	0.70
Peridinium sp. gr. Peridinium umbonatum - Complex	13 9	100,000 14,838	0,130 0,607	36029 1863	4,68 1,13	0,79 0,19
Cryptophyceae	9	14,030	0,007	1003	1,13	0,19
Cryptomonas erosa + sp.	105	14,838	7,076	2290	16,20	2,72
Cryptomonas marssonii	4	1,436	2,785	560	1,56	0,26
Cryptomonas rostratiformis	6	14,838	0,404	4939	2,00	0,20
Cryptomonas sp.	١	17,000	0,404	7333	۷,00	0,54

Rhodomonas (=Plagioselmis) lacustris						
Plagioselmis nannoplanctica	66	0,476	138,528	60	8,27	1,39
Rhodomonas lens						
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	80	100,000	0,800	450	0,36	0,06
Aulacoseira subarctica	67	14,838	4,493	274	1,23	0,21
Cyclotella bodanica	2	100,000	0,020	27834	0,56	0,09
Cyclotella gr.sp.	7	14,838	0,472	2512	1,19	0,20
Cyclotella kl.sp.	152	0,476	319,034	68	21,64	3,64
Fragilaria crotonensis	42	100,000	0,417	806	0,34	0,06
Stephanodiscus neoastraea	3	14,838	0,202	10598	2,14	0,36
Ulnaria delicatissima	12	14,838	0,809	524	0,42	0,07
Ulnaria delicatissima var. angustissima	12	100,000	0,120	2016	0,24	0,04
Ulnaria sp.						
Picoplankton < 5 μm						
Picoplankton indet.	117	0,318	368,358	5	1,79	0,30
Gesamt			1642,07		594,77	100,00
			10 ³ L ⁻¹		0,595	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-07_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im Juli bei 4,5 % - und damit deutlich unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-08-01

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-08				
Auftraggeber	Amt der Oberösterreichischen Land	n Landesregierung					

Allgemeine Angal	oen									
Gewässername		Mon	dsee		Rechtswert		45	4.554		
Messstellenname					Hochwert		29	6.874		
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer C	Grundzustand	oli	gotroph		
Detail WK ID					Höhe Messpu	nkt [m]	48	1		
2	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor						
Datum Probenahme	2023-08	8-01		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IG	iF	
Limnologisch charakteri			punkt **	Somr	merstagnation					
* wenn Proben nicht vom selben Prüflabor gezogen ** Frühjahrszirkulation, Beginn der Sommerstagnation, Höhepunkt der Sommerstagnation, Beginn der Herbstzirkulation										
Witterung										
vor der Probenahme			me	während der Pro			benahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbı	ung, Schicht	ung						
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der I			□ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ok Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			2,5	
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfäi	rbung	•					
Probenahme										
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m					x Mischprobe □ integrierende Probe		
					wenn Mischpro	be: Angabe der	Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [µı)								

Qualitative .	Analy	/se								
Probennummer		MON2023-08		Bea	arbeiterIn	Christian Jers	abek			
Datum der Analy	/se	2024-01-03		Pro	benart	☐ lebend		x fixiert		
Quantitative	e Ana	alyse								
Probennummer MON2023-08					Nachfixierur Probe	ng der quantitati	iven	□ ja	х	nein
BearbeiterIn		Christian Je	ersabek		wenn ja, wa	nn				
Datum der Analy		2024-01-03	3		Kammertyp			Utermöh	<u>I</u>	
Zeitraum zw. Pro me und Analyse	obenah	158 Tage			Kammervolu	ımen		10 ml		
					Ausgegossenes Volumen der Probe			100 ml		
Quantitative P	robe:	Zählstrategie								
Proben-Nr.	k	Cammertyp	Zählstrategie			Anzahl D	iagona	alen / Felder		
			Diagonalen/Felder		Obj. 5x Obj. 10x Obj			bj. 25x	Obj. 40x	
MON2023-08		enkammer Utermöhl	Ganze Kammer		1					
			Diagonale/Felder			3 D		15 F	10, 12 F	
Diatomeenp	robe	1								
Herkunft										
wenn eigene Dia	tomee	nprobe								
Probennummer		MON2023-08_I	Diat		Volumen					
Präparation		x Glühpräpara	t □ chem	nische	Oxidation					
Optische Au	srüst	tung des Zäh	lmikroskops und Du	rchli	ichtmikro	skops für di	e Dia	tomeen	-Analyse	
Zählmikroskop (Marke/Typ))				Zeiss Telav	ral 3, Jena				
Durchlichtmiki ja/nein)	oskop	(Marke/Typ, F	Phasenkontrast ja/nein, [DIC	Leitz Diapl	an (ja/ja)				
Stärkstes Obje (Vergrößerung		erische Apertu	r)		100x (oil, 1	1,25)				

MON2023-08-01	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zelivolumen [µm³]	FW [µg l⁻¹]	Rel. Anteil [%]
	- =	O ·	٩	Σę	ш	Ľ
Cyanobacteria						
Aphanizomenon flos-aquae	6	14,838	0,404	598	0,24	0,05
Aphanocapsa sp.						
Chroococcus limneticus	6	1,026	5,848	132	0,77	0,15
Gomphosphaeria aponina						
Planktothrix rubescens	1690	14,838	113,896	2211	251,82	48,25
Snowella lacustris						
Chlorophyceae						
Botryococcus braunii	6	100,000	0,060	8798	0,53	0,10
Coenochloris sp.						
Elakatothrix genevensis						
Elakatothrix cf. biplex						
Oocystis solitaria	2	14,838	0,135	7862	1,06	0,20
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii	55	0,318	173,160	24	4,22	0,81
Scenedesmus linearis						
Scenedesmus sp.						
Sphaerocystis schroeteri						
Tetrastrum triangulare						
Willea (=Crucigeniella) irregularis						
Conjugatophyceae						
Cosmarium depressum	21	14,838	1,415	3697	5,23	1,00
Staurastrum cingulum						
Euglenophyceae						
Trachelomonas volvocina	2	14,838	0,135	2354	0,32	0,06
Xanthophyceae		·	·		·	
Gloeobotrys limneticus						
Chrysophyceae						
Bitrichia chodatii						
Dinobryon bavaricum						
Dinobryon crenulatum	12	0,318	37,780	65	2,47	0,47
Dinobryon divergens	75	1,026	73,097	203	14,87	2,85
Dinobryon sociale		,	2,22.		-,	_,
Mallomonas caudata	5	14,838	0,337	4886	1,65	0,32
Mallomonas elongata	3	14,838	0,202	2207	0,45	0,09
Mallomonas sp.		,	,	- '	-, -	-,
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	203	100,000	2,030	52423	106,42	20,39
Co. adam milananona	200	100,000	2,000	02720	100,72	20,03

					mm³ L ⁻¹	
			10 ³ L ⁻¹		0,522	%
Gesamt			1727,45		521,91	100,00
Picoplankton indet.	125	0,265	472,254	4	1,98	0,38
Picoplankton < 5 μm						
Ulnaria sp.						
Ulnaria delicatissima var. angustissima	3	14,838	0,202	2016	0,41	0,08
Ulnaria delicatissima						
Tabellaria flocculosa						
Stephanodiscus neoastraea	3	14,838	0,202	6899	1,39	0,27
Nitzschia acicularis						
Eunotia sp.						
Diatoma tenuis						
Cymbella sp.						
Cymbella ehrenbergii		0,010	310,100	30	00,20	5,70
Cyclotella kl.sp.	165	0,318	519,480	68	35,23	6,75
Cyclotella gr.sp.	9	14,838	0,607	3577	2,17	0,42
Cyclotella radiosa	22	14,030	1,730	202	0,39	0,00
Aulacoseira subarctica	22	14,838	1,498	262	0,48	0,08
Asterionella formosa	16	14,838	1,078	442	0,48	0,09
Achnanthes sp.						
Bacillariophyceae						
Plagioselmis nannoplanctica Rhodomonas lens	88	0,318	277,056	106	29,33	5,62
Cryptomonas marssonii	27 88	1,026	26,315	604 106	15,90	3,05
Cryptomonas erosa	9	1,026	8,772	2052	18,00	3,45
Cryptophyceae		4.000	0.770	0050	40.00	0.4-
Peridinium sp.gr.	6	100,000	0,060	58943	3,54	0,68
Gymnodinium sp.kl.	10	1,026	9,746	781	7,61	1,46
Gymnodinium helveticum	15	14,838	1,011	9111	9,21	1,76
Glenodinium sp.						
Dinophyceae indet.	10	14,838	0,674	9210	6,21	1,19

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-08_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im August bei 7,5 % - und damit unter den lt. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-09-11

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-09	
Auftraggeber	Amt der Oberösterreichischen Land	esregierung		

Allgemeine Angal	oen								
Gewässername		Mon	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer G	Grundzustand	oli	gotroph	
Detail WK ID					Höhe Messpu	nkt [m]	48	1	
2	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-09	9-11		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfl	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IG	iF
Limnologisch charakteri			punkt **	Höhe	punkt der Somme	erstagnation			
* wenn Proben nicht vom selben Prüflabor gezogen ** Frühjahrszirkulation, Beginn der Sommerstagnation, Höhepunkt der Sommerstagnation, Beginn der Herbstzirkulation									
Witterung									
vor der Probenahme			me	während der Probens			benahme		
Wetter									
Wind									
Niederschlag		Da	Datum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung					
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der F			□ja	□ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	erflächenfilm,			
Trübung, Art der Trübung **					Thermokline [m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			4,1
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	photischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig	* * mii	neralisc	ch, organisch, Calcitfär	rbung					
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]	penahmetiefe der quantitativen 0 – 21 m					Mischprobe integrierende Probe			
					wenn Mischprol	be: Angabe der	Tiefe	enstufen	
Maschenweite für die qu Phytoplankton-Probe [µı)							

Qualitative	Analys	se .									
Probennummer MON2023			N2023-09		arbeiterIn	Christian Jers	Christian Jersabek				
Datum der Analyse 20		024-01-04		Pro	benart	☐ lebend x fixier					
Quantitative	e Anal	yse									
Probennummer		MON2023-	MON2023-09			Nachfixierung der quantitativen Probe		□ ja		x nein	
BearbeiterIn		Christian Je	Christian Jersabek			wenn ja, wann					
Datum der Analyse		2024-01-04	2024-01-04			Kammertyp			Utermöhl		
Zeitraum zw. Probenah- me und Analyse		119 Tage	119 Tage			Kammervolumen		10 ml			
					Ausgegossenes Volumen der Probe		r	100 ml			
Quantitative P	robe: Z	ählstrategie									
Proben-Nr.	Ka	mmertyp	Zählstrategie		Anzahl Diagonalen / Felder						
Troben Nr.	••		Diagonalen/Felder		Obj. 5x Obj. 10x C		0	bj. 25x Obj. 40x Ob		Obj. 60x	
MON2023-09 Röhrenl nach Ut		nkammer Itermöhl	Ganze Kammer	1							
			Diagonale/Felder			3 D	21 F		10, 18 F		
Diatomeenp	robe										
Herkunft											
wenn eigene Dia	tomeen	probe									
Probennummer M		MON2023-09_I	ON2023-09_Diat			Volumen					
Präparation	nische	e Oxidation									
Optische Au	ısrüstu	ıng des Zäh	lmikroskops und Du	rchl	ichtmikro	skops für di	e Dia	itomeer	n-Analyse		
Zählmikroskop (Marke/Typ)					Zeiss Telaval 3, Jena						
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)					Leitz Diaplan (ja/ja)						
Stärkstes Objektiv (Vergrößerung, numerische Apertur)					100x (oil, 1,25)						

MON2023-09-11	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanizomenon flos-aquae	1	14,838	0,067	624	0,04	0,01
Aphanocapsa sp.	22	1,436	15,316	2456	37,62	6,16
Chroococcus limneticus						
Gomphosphaeria aponina						
Planktothrix rubescens	1900	14,838	128,048	2234	286,10	46,88
Snowella lacustris						
Chlorophyceae						
Elakatothrix genevensis						
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii	10	0,476	20,989	42	0,88	0,14
Planktosphaeria gelatinosa						
Scenedesmus sp.						
Tetrachlorella incerta						
Tetraedron minimum						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum	15	14,838	1,011	3723	3,76	0,62
Staurastrum cingulum		·	,		,	•
Xanthophyceae						
Gloeobotrys limneticus						
Chrysophyceae						
Bitrichia chodatii						
Dinobryon bavaricum	10	1,436	6,962	228	1,58	0,26
Dinobryon divergens	18	1,436	12,531	212	2,66	0,44
Dinobryon sociale		·	,		,	
Mallomonas sp.						
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	104	100,000	1,040	49370	51,34	8,41
Dinophyceae indet.	93	14,838	6,268	8785	55,06	9,02
Glenodinium sp.		,	,		, ,	•
Gymnodinium helveticum	25	14,838	1,685	12325	20,77	3,40
Gymnodinium sp.		•	·			•
Peridinium sp.gr.	61	100,000	0,610	37142	22,66	3,71
Peridinium umbonatum - Complex	10	14,838	0,674	2212	1,49	0,24
Cryptophyceae		,	,		,	•
Cryptomonas erosa	24	1,436	16,708	2210	36,92	6,05
Cryptomonas marssonii	30	1,436	20,885	619	12,92	2,12

Plagioselmis nannoplanctica	220	0,476	461,760	66	30,32	4,97
Rhodomonas lens						
Bacillariophyceae						
Asterionella formosa	1312	100,000	13,120	370	4,85	0,79
Aulacoseira subarctica	113	14,838	7,582	227	1,72	0,28
Cyclotella gr. sp.	4	14,838	0,270	3577	0,96	0,16
Cyclotella kl. sp.	75	0,476	157,418	108	16,95	2,78
Fragilaria crotonensis	208	100,000	2,083	956	1,99	0,33
Stephanodiscus neoastraea						
Ulnaria delicatissima	60	1,436	41,770	423	17,65	2,89
Ulnaria delicatissima var. angustissima						
Ulnaria ulna						
Picoplankton < 5 µm						
Picoplankton indet.	110	0,265	415,584	5	2,02	0,33
Gesamt			1332,38		610,26	100,00
			10 ³ L ⁻¹		0,610	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-09_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im September bei 3,2 % - und damit deutlich unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-10-02

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-10
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Mon	dsee		Rechtswert		45	4.554		
Messstellenname					Hochwert		29	6.874		
(GZÜV-)Messstellen_ID					Median		31	-		
Detail WK Name					Trophischer 6	Grundzustand	oli	gotroph		
Detail WK ID					Höhe Messpu	nkt [m]	48	31		
Z	Zu jewe	eils r	mindestens 4	4 Teri	minen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Probenahme-Team, Prüflabor										
Datum Probenahme 2023-10-02 Probenahme-Team										
Uhrzeit Probenahme	Prüflahor *				Bundesamt für Mondsee, Scha		erwirtschaft	IGF		
Limnologisch charakteri			punkt **	unkt ** Beginn der Herbstzirkulation						
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstagi	nation, Beginn der Herb	estzirkulation				
Witterung										
		vo	r der Probenah	me		während de	r Probenahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ıng, Schicht	ung						
Hochwassereinfluss (de	r wichti	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der F			□ja	☐ nein	
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest	:			Sonstiges (Ob Pollenflug)	perflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			3,2	
Algenblüten, Auftriebsflo	ocken		ja □	nein	Grenze der eu [m] (Kompens	photischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	neralisc	h, organisch, Calcitfä	rbung						
Probenahme										
Probenahmetiefe der qua Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			lischprobe ntegrieren		
					wenn Mischpro	be: Angabe de	r Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [μι)								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative .	Analys	se								
Probennummer		MON2023-10		Bearbeit	erIn	Christian Jers	abek			
Datum der Analy	/se	2024-01-05		Probena	rt	☐ lebend		x fixiert		
Quantitativ	e Anal	vse								
Probennummer		MON2023-	10	Nac Prol		g der quantitati	iven	□ ja	:	x nein
BearbeiterIn		Christian Jo	ersabek	wen	n ja, war	n				
Datum der Analy		2024-01-05	5	Kam	mertyp			Utermöh	nl .	
Zeitraum zw. Pro me und Analyse	obenah-	99 Tage			mervolu			10 ml		
	Ausgegossenes Volumen der Probe									
Quantitative P	robe: Z	ählstrategie								
Proben-Nr.	Ка	mmertyp	Zählstrategie					1		
	Dähva	nkammer	Diagonalen/Felder	Obj.	5x	Obj. 10x	Obj. 25x		Obj. 40x	
MON2023-10		ikammer Itermöhl	Ganze Kammer	1						
			Diagonale/Felder	3 D		3 D	15,	18,21 F	10,12,18 F	
Diatomeenp	robe									
Herkunft										
wenn eigene Dia										
Probennummer	I	MON2023-10_	Diat	Vol	umen					
Präparation	2	x Glühpräpara	t □ chen	nische Oxio	lation					
Optische Au	ısrüstu	ıng des Zäh	ılmikroskops und Du	rchlicht	mikros	skops für di	e Dia	tomeer	n-Analyse	
Zählmikroskop (Marke/Typ)				Z	eiss Telo	aval 3, Jena				
Durchlichtmiki ja/nein)	oskop (Marke/Typ, I	Phasenkontrast ja/nein, [DIC	eitz Dia _l	olan (ja/ja)				
Stärkstes Obje (Vergrößerung		rische Apertu	r)	1	00x (oil,	1,25)				

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: MON2023-10

				_		
MON2023-10-02	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanizomenon flos-aquae	11	14,838	0,741	642	0,48	0,05
Aphanocapsa sp.	6	1,436	4,177	2047	8,55	0,82
Chroococcus limneticus	168	1,436	116,955	72	8,42	0,80
Planktothrix rubescens	1680	14,838	113,222	2219	251,23	23,97
Snowella lacustris	13	1,436	9,050	809	7,32	0,70
Chlorophyceae						
Botryococcus braunii	5	100,000	0,050	9937	0,50	0,05
Elakatothrix genevensis						
Oocystis sp.						
Pediastrum boryanum						
Planctonema lauterbornii						
Pseudosphaerocystis lacustris	128	100,000	1,280	382	0,49	0,05
Scenedesmus linearis						
Tetrachlorella alternans						
Tetrachlorella incerta						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum	27	14,838	1,820	3723	6,78	0,65
Xanthophyceae						
Gloeobotrys limneticus						
Chrysophyceae						
Bitrichia chodatii						
Dinobryon bavaricum	2	1,231	1,624	228	0,37	0,04
Dinobryon divergens	27	1,231	21,929	212	4,65	0,44
Dinobryon sertularia	12	1,231	9,746	225	2,20	0,21
Dinobryon sociale	40	1,231	32,488	183	5,94	0,57
Mallomonas sp.						
Pseudopedinella sp.						
Uroglena sp.	23	0,318	72,412	158	11,44	1,09
Haptophyceae						
Chrysochromulina parva	15	0,318	47,225	60	2,82	0,27
Dinophyceae						
Ceratium hirundinella	188	100,000	1,880	50101	94,19	8,99
Dinophyceae indet.		•				
Glenodinium sp.						
Gymnodinium helveticum	43	14,838	2,898	12570	36,43	3,48
Gymnodinium sp.	7	1,231	5,685	956	5,44	0,52
Peridinium sp.	32	100,000	0,320	47567	15,22	1,45
Peridinium umbonatum - Complex		•			,	
Cryptophyceae						

					mm³ L ⁻¹	
			10 ³ L ⁻¹		1,048	%
Gesamt			2494,84		1048,02	100,00
Picoplankton indet.	157	0,265	593,151	6	3,78	0,36
Picoplankton < 5 μm						
Ulnaria delicatissima var. angustissima						
Ulnaria delicatissima	407	1,026	396,672	419	166,16	15,85
Stephanodiscus neoastraea	3	14,838	0,202	16828	3,40	0,32
Fragilaria crotonensis	3000	29,970	100,100	1603	160,48	15,31
Cyclotella kl.sp.	251	0,476	526,826	161	84,70	8,08
Cyclotella gr.sp.	4	14,838	0,270	3577	0,96	0,09
Aulacoseira subarctica	56	14,838	3,791	242	0,92	0,09
Asterionella formosa	216	14,838	14,557	370	5,38	0,51
Achnanthes sp.						
Bacillariophyceae		·	·		·	·
Rhodomonas lens	23	0,476	48,275	491	23,69	2,26
Plagioselmis nannoplanctica	148	0,476	310,638	117	36,31	3,46
Cryptomonas marssonii	22	1,231	17,868	609	10,88	1,04
Cryptomonas erosa	48	1,231	38,985	2281	88,91	8,48

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-10_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im Oktober bei 8,6 % - und damit unter den lt. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-11-08

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-11
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	ben								
Gewässername		Mon	dsee		Rechtswert		45	4.554	
Messstellenname					Hochwert		29	6.874	
(GZÜV-)Messstellen_ID					Median		31		
Detail WK Name					Trophischer C	Grundzustand	oligotroph		
Detail WK ID					Höhe Messpu	nkt [m]	48	1	
Z	Zu jewe	eils r	mindestens 4	4 Terr	minen pro Un	tersuchung	sjah	r:	
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor					
Datum Probenahme	2023-1	1-08		Prob	enahme-Team				
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft I	GF
Limnologisch charakteri			punkt **	Herbs	stzirkulation				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstagr	nation, Beginn der Herb	ostzirkulation			
Witterung									
		vo	r der Probenah	der Probenahme während der				benahme	
Wetter									
Wind									
Niederschlag		Da	atum:						
Lufttemperatur [°C]									
Wolkenbedeckung [%]									
						•			
Hydrographie, Trüb	ung, F	ärbu	ıng, Schicht	ung					
Hochwassereinfluss (de	r wichti	gsten	Zubringer)						
vor der Probenahme			ja □	nein	während der I	Probenahme		□ja	☐ nein
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest	i			Sonstiges (Ob Pollenflug)	perflächenfilm,			
Trübung, Art der Trübung **					Thermokline [[m]			
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,3
Algenblüten, Auftriebsfl	ocken		ja 🗆	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne		
* z.B. hoch, mittel, niedrig									
Probenahme									
Probenahmetiefe der qu Probe [m; vonbis]		en	0 – 21 m		Art der Probena quantitativen Pr			lischprobe ntegrierend	le Probe
					wenn Mischpro	be: Angabe de			
Maschenweite für die qu Phytoplankton-Probe [u		•							

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative	Analys	е								
Probennummer	ı	MON2023-11		Bearbei	terIn	Christian Jers	abek			
Datum der Anal	yse 2	2024-01-06		Probena	art	☐ lebend		x fixiert		
Quantitativ	e Analy	/se								
Probennummer		MON2023-	11	Nac Pro		g der quantitati	ven	□ ja		x nein
BearbeiterIn		Christian J	ersabek	wer	nn ja, wan	ın				
Datum der Anal	yse	2024-01-06	õ	Kan	nmertyp			Utermöh	ıl	
Zeitraum zw. Pro me und Analyse	m zw. Probenah- Analyse 64 Tage					men		10 ml		
	Ausgegossenes Volumen der Probe							100 ml		
Quantitative P	robe: Zä	ihlstrategie		•						
Proben-Nr.	Kai	mmertyp	Zählstrategie				_	len / Felde		
			Diagonalen/Felder	Obj. 5x		Obj. 10x	Obj. 25x		Obj. 40x	
MON2023-11		ıkammer termöhl	Ganze Kammer	1						
			Diagonale/Felder			3 D		21 F	18 F	
Diatomeen	orobe									
Herkunft										
wenn eigene Did										
Probennummer	r	MON2023-11_	Diat	Vol	lumen					
Präparation	Х	Glühpräpara	t □ chem	nische Oxi	dation					
Optische Au Zählmikroskop (Marke/Typ)		ng des Zäh	ılmikroskops und Du			kops für di	e Dia	tomeer	n-Analyse	
	roskop (Marke/Typ, I	Phasenkontrast ja/nein, [DIC	Leitz Diaplan (ja/ja)					
Stärkstes Obje (Vergrößerung		ische Apertu	r)	1	100x (oil,	1,25)				

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: MON2023-11

	_		N	<u> </u>	_	_
MON2023-11-08	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanizomenon flos-aquae	34	14,838	2,291	594	1,36	0,59
Aphanocapsa sp.						
Chroococcus limneticus	32	1,436	22,277	46	1,03	0,45
Gomphosphaeria aponina						
Planktothrix rubescens	471	14,838	31,743	2196	69,70	30,39
Snowella lacustris	15	14,838	1,011	1668	1,69	0,74
Chlorophyceae						
Botryococcus braunii	2	100,000	0,020	9528	0,19	0,08
Elakatothrix genevensis						
Oocystis solitaria						
Oocystis sp.						
Pediastrum boryanum						
Phacotus lenticularis						
Planctonema lauterbornii						
Scenedesmus linearis						
Scenedesmus sp.						
Sphaerocystis schroeteri						
Tetrachlorella incerta						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum	14	14,838	0,944	3647	3,44	1,50
Xanthophyceae						
Gloeobotrys limneticus						
Chrysophyceae						
Dinobryon divergens						
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	36	100,000	0,360	48968	17,63	7,69
Dinophycea indet.	5	14,838	0,337	9126	3,08	1,34
Glenodinium sp.		,	,		,	,
Gymnodinium helveticum	10	14,838	0,674	17648	11,89	5,19
Gymnodinium sp.	3	1,436	2,088	956	2,00	0,87
Cryptophyceae		,	,		,	,
Cryptomonas erosa	9	1,436	6,265	1771	11,10	4,84
Cryptomonas marssonii	3	1,436	2,088	610	1,27	0,56
Cryptomonas rostratiformis		,	,		, -	-,
Plagioselmis nannoplanctica	114	0,476	239,276	79	18,81	8,20
Rhodomonas lens	55	0,476	115,440	414	47,78	20,83
Bacillariophyceae	30	-, J	-,		,. 5	

Achnanthes sp.						
Asterionella formosa	96	100,000	0,960	393	0,38	0,16
Aulacoseira subarctica	56	14,838	3,744	259	0,97	0,42
Cyclotella cf. comensis	6	0,476	11,754	161	1,89	0,82
Cyclotella cyclopuncta	64	0,476	133,700	132	17,71	7,72
Cyclotella distinguenda	1	14,838	0,097	2328	0,23	0,10
Cyclotella kuetzingiana	2	14,838	0,146	4618	0,67	0,29
Cyclotella ocellata	3	14,838	0,194	2154	0,42	0,18
Cyclotella radiosa	2	14,838	0,146	2772	0,40	0,18
Cymbella lanceolata						
Diatoma ehrenbergii						
Discostella glomerata	1	0,476	1,469	229	0,34	0,15
Fragilaria crotonensis	804	100,000	8,035	634	5,10	2,22
Staurosira construens	480	100,000	4,800	313	1,50	0,65
Stephanocostis chantaicus						
Stephanodiscus alpinus	4	14,838	0,243	2405	0,58	0,25
Stephanodiscus neoastraea	6	14,838	0,388	12268	4,76	2,08
Ulnaria delicatissima	12	1,436	8,354	375	3,13	1,37
Ulnaria delicatissima var. angustissima	2	14,838	0,135	2281	0,31	0,13
Gesamt			598,98		229,35	100,00
			10 ³ L ⁻¹		0,229	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-11_Diato

Taxon	Rebecca-			Größ	enklassen	[µm]		
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37
Aulacoseira subarctica	R0033	16						
Cyclotella cf. comensis	R0042	2	11	1				
Cyclotella cyclopuncta	R2195	36	82	14				
Cyclotella distinguenda	R2196			3	3	2		
Cyclotella kuetzingiana	R0046				1	3		
Cyclotella ocellata	R0048				5	2		
Cyclotella radiosa	R0051				2	4		
Discostella glomerata	R2058		3					
Stephanodiscus alpinus	R0076			3	6			
Stephanodiscus neoastraea	R0083				1	9	3	
Summe Schalen pro Größen	klasse	54	96	21	18	20	3	
Gesamtsumme Schalen						212		
Anteil centrischer Diatomeen	am Gesamt-l	Biovolum	en			12,2 %		

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Mondsee 2023-12-04

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	MON2023-12	
Auftraggeber	Amt der Oberösterreichischen Land	esregierung		

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angak	oen									
Gewässername		Mon	dsee		Rechtswert		45	4.554		
Messstellenname					Hochwert		296.874			
(GZÜV-)Messstellen_ID					Median		31	31		
Detail WK Name					Trophischer C	Grundzustand	oli	gotroph		
Detail WK ID					Höhe Messpu	nkt [m] 481				
Zu jeweils mindestens 4 Terminen pro Untersuchungsjahr:										
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	bor						
Datum Probenahme	2023-12	2-04		Prob	enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft	IGF	
Limnologisch charakteristischer 2			punkt **	Herbs	stzirkulation					
* wenn Proben nicht vom selben Pr ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Son	nmerstagi	nation, Beginn der Herb	ostzirkulation				
Witterung										
		vo	r der Probenah	me	während der			r Probenahme		
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichti	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der I			□ja	☐ nein	
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest				Sonstiges (Ob Pollenflug)	perflächenfilm,				
Trübung, Art der Trübung **					Thermokline [[m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			6,0	
Algenblüten, Auftriebsflo	ocken		ja □	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	neralisc	ch, organisch, Calcitfä	rbung						
Probenahme	Probenahme									
Probenahmetiefe der qua Probe [m; vonbis]		en	0 – 21 m	0 = 21 m				x Mischprobe ☐ integrierende Probe		
		wenn Mischprobe			be: Angabe de	Tiefe	enstufen			
Maschenweite für die qu Phytoplankton-Probe [µr)								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative A	Qualitative Analyse									
Probennummer		MON2023-12		Be	arbeiterIn	Christian	Jersak	ek		
Datum der Analy	/se	2024-01-07		Pro	benart	benart ☐ lebend x fixiert				
Quantitative	e Ana	alyse								
Probennummer		MON2023-	12		Nachfixieru tiven Probe	ing der quant	tita-	□ ja	х	nein
BearbeiterIn		Christian J	ersabek		wenn ja, wa	ann				
Datum der Analy		2024-01-07	7		Kammertyp)		Utermöhl		
Zeitraum zw. Pro me und Analyse	benah	1- 39 Tage			Kammervo	lumen		10 ml		
					Ausgegosse Probe	enes Volumei	n der	100 ml		
Quantitative P	robe:	Zählstrategie	T	1						
Proben-Nr.	K	Cammertyp	Zählstrategie					onalen / Feld	1	I
	D"L		Diagonalen/Felder		Obj. 5x	Obj. 10x	C)bj. 25x	Obj. 40x	
MON2023-12	_	enkammer Utermöhl	Ganze Kammer	1						
			Diagonale/Felder			3 D		26 F	24 F	
Diatomeenp	robe	:								
Herkunft										
wenn eigene Dia	tomee	nprobe								
Probennummer		MON2023-12_	Diat		Volumen					
Präparation		x Glühpräpara	t □ chem	nisch	e Oxidation					
Optische Au	srüst	tung des Zäh	lmikroskops und Du	rchl	lichtmikro	oskops fü	r die	Diatome	en-Analys	e
Zählmikroskop (Marke/Typ))				Zeiss Tela	val 3, Jena				
	oskop	(Marke/Typ,	Phasenkontrast ja/nein, [OIC	Leitz Diaplan (ja/ja)					
Stärkstes Obje (Vergrößerung		erische Apertu	r)		100x (oil,	1,25)				

4. Quantitative Analyse (Utermöhl-Zählung) Laborinterne Probennummer: MON2023-12

MON2023-12-04	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [μm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Aphanizomenon flos-aquae	2	14,838	0,135	589	0,08	0,05
Aphanocapsa sp.						
Chroococcus limneticus	4	1,778	2,249	66	0,15	0,09
Gomphosphaeria aponina						
Planktothrix rubescens	168	6,038	27,823	2219	61,74	37,42
Snowella lacustris	5	14,838	0,337	850	0,29	0,17
Chlorophyceae						
Botryococcus braunii	30	100,000	0,300	9784	2,94	1,78
Elakatothrix genevensis						
Planctonema lauterbornii						
Tetrastrum triangulare						
Conjugatophyceae						
Cosmarium depressum	2	14,838	0,135	3698	0,50	0,30
Staurastrum cingulum						
Chrysophyceae						
Dinobryon bavaricum						
Mallomonas elongata						
Haptophyceae						
Chrysochromulina parva						
Dinophyceae						
Ceratium hirundinella	14	100,000	0,140	49772	6,97	4,22
Glenodinium sp.						
Gymnodinium helveticum	9	14,838	0,607	12246	7,43	4,50
Gymnodinium sp.						
Peridinium sp.						
Peridinium willei + sp.	13	100,000	0,130	54351	7,07	4,28
Cryptophyceae						
Cryptomonas erosa	114	14,838	7,683	2160	16,60	10,06
Plagioselmis nannoplanctica	66	0,635	103,896	82	8,51	5,16
Rhodomonas lens	33	0,635	51,948	402	20,90	12,67
Bacillariophyceae						
Asterionella formosa	608	100,000	6,080	433	2,63	1,59
Aulacoseira islandica						
Aulacoseira subarctica	235	14,838	15,838	264	4,18	2,53
Cyclotella cf. comensis	2	0,635	2,519	229	0,58	0,35
Cyclotella cyclopuncta	37	0,635	58,560	132	7,76	4,70
Cyclotella intermedia	1	14,838	0,049	10816	0,52	0,32
Cyclotella ocellata	1	14,838	0,049	1831	0,09	0,05
Cyclotella radiosa	4	14,838	0,291	1731	0,50	0,31
Cymatopleura elliptica						

Cymatopleura solea	4	100,000	0,040	25442	1,02	0,62
Fragilaria crotonensis	472	100,000	4,717	1166	5,50	3,33
Stephanocostis chantaica	0,4	0,635	0,630	60	0,04	0,02
Stephanodiscus alpinus gr.	4	14,838	0,275	1710	0,47	0,29
Stephanodiscus alpinus kl.	1	0,635	1,259	522	0,66	0,40
Stephanodiscus neoastraea gr.	14	100,000	0,140	19881	2,78	1,69
Stephanodiscus neoastraea kl.	14	14,838	0,954	4776	4,56	2,76
Tabellaria flocculosa						
Ulnaria delicatissima	2	1,778	1,125	479	0,54	0,33
Gesamt			287,91		164,97	100,00
			10 ³ L ⁻¹		0,165	%
					mm³ L ⁻¹	

Anmerkung: Aus Übersichtsgründen werden in obenstehender Tabelle die meist sehr kleinen individuellen Einzelwerte als Frischgewicht [μ g L⁻¹] dargestellt und erst unten summarisch in Biovolumen [mm³ L⁻¹] umgerechnet. Unter Annahme eines spezifischen Gewichts von 1.0 für Planktonorganismen gilt dabei 1000 μ g/l = 1 mm³/l.

Neben quantitativen Daten gezählter Arten sind in die Tabelle auch die Ergebnisse der qualitativen Analyse eingeflossen. Sofern in der Probe vorhanden, jedoch nicht in quantifizierbarer Dichte, werden diese lediglich gelistet, ohne weitere Häufigkeitsschätzung.

5. Diatomeenanalyse

Laborinterne Probennummer: MON2023-12_Diato

Taxon	Rebecca-			Größenklassen [µm]						
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37		
Aulacoseira subarctica	R0033	35								
Cyclotella cf. comensis	R0042	2	4	1						
Cyclotella cyclopuncta	R2195	19	44	2						
Cyclotella intermedia	R0040					3				
Cyclotella ocellata	R0048			1	2					
Cyclotella radiosa	R0051			2	5	1				
Stephanocostis chantaica	R0075	2								
Stephanodiscus alpinus	R0076			3	6					
Stephanodiscus neoastraea	R0083				2	12	8	8		
Summe Schalen pro Größen	klasse	21	44	8	15	16	8	8		
Gesamtsumme Schalen						162				
Anteil centrischer Diatomeen		162 13,4 %								

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

8. TRAUNSEE

8.1. Gutachten Phytoplankton

Ergebnisübersicht für das Untersuchungsjahr 2023 sowie 3-Jahresmittel

Ergebnisübersicht der Untersuchungstermine eines Jahres

sowie 3-Jahresmittel

Datum	Chlorophyll-a [µgL ⁻¹]	Biovolumen* [mm³L ⁻¹]	Brettum-Index
21.03.2023	0,20	0,06	4,18
21.06.2023	1,40	0,13	5,05
22.08.2023	1,20	0,27	3,62
20.11.2023	0,70	0,18	5,29

^{*} abz. heterotrophe Arten

Jahre		phyll-a nittelwert)		Biovolumen (Jahresmittelwert) Brettum-Index (Jahresmittelwert)		Gesamtbewertung (gewichteter MW)	Ökologische Zustandsklasse	
	[µgL ⁻¹]	nEQR	[mm ³ L ⁻¹]	nEQR	Index	nEQR	nEQR	
2021	1,08	1,00	0,10	1,00	4,53	0,83	0,917	sehr gut
2022	1,15	1,00	0,38	0,76	3,80	0,67	0,777	gut
2023	0,88	1,00	0,16	1,00	4,54	0,84	0,918	sehr gut
			3 Jahresmitt	0,871	sehr gut			

BEURTEILUNG

Qualitätselement Phytoplankton im Untersuchungsjahr 2023 sehr gut

Qualitätselement Phytoplankton im 3-Jahresmittel (2021-2023) sehr gut

1. Angaben zum See, zur Untersuchungsstelle und Probenahmen

See und Untersuchungssto	elle					
Gewässername	Trauns	ee	Höhe Messpunkt [m]		423	
Messstellenname			Fläche [km²]		24,4	
(GZÜV-)Messstellen_ID			Maximale Länge [km]	11,9	
Rechtswert	484.52	8	Maximale Breite [km	1	2,9	
Hochwert	304.80	7	Maximale Tiefe [m]		191	
Median	31		Mittlere Tiefe [m]		90	
Detail WK Name			Gesamtvolumen [Mi	o. m³]	2188,7	
Detail WK ID			Mittlerer Abfluss (M	Q) [m³/s]	69,4	
IC-Seentyp (Interkalibrierung)	L-AL3		Abfluss		Traun	
AT-Seentyp (National)	D1		Wassererneuerungsz theoretisch [Jahre]	eit /	1,04	
Trophischer Grundzustand	oligotro	oph	Durchmischung / Sch	ichtungstyp	Holo- / monomiktisch	
Zugrunde liegenden Prüfb	erichte	2				
		1. Termin	2. Termin	3. Termin		4. Termin
Nummern der zugrunde liegenden Prüfberichte		2023/01	2023/02	2023/0	3	2023/04
Probenahmetermine der zugrunde liegen- de Prüfberichte		2023-03-21	2023-06-21	2023-08-22		2023-11-20

2. Ergebnisübersicht – Zusammenfassung der 4 Beprobungstermine

Chlorophyll-a Konzentration	μgL ⁻¹	EQR	nEQR
Referenzwert	1,50	1,00	1,00
Grenze sehr gut/gut	2,14	0,70	0,80
Grenze gut/mäßig	3,75	0,40	0,60
Jahresmittel	0,88	1,71	1,00
Biovolumen	mm³L ⁻¹	EQR	nEQR
Referenzwert	0,20	1,00	1,00
Grenze sehr gut/gut	0,33	0,60	0,80
Grenze gut/mäßig	0,80	0,25	0,60
Jahresmittel	0,16	1,26	1,00
Brettum-Index	Wert	EQR	nEQR
Referenzwert	5,29	1,00	1,00
Grenze sehr gut/gut	4,37	0,83	0,80
Grenze gut/mäßig	3,46	0,65	0,60
Jahresmittel	4,54	0,86	0,84

8.2. Ergebnistabellen

Tab. 8.2.1. Zusammenfassung quantitative und qualitative Phytoplanktonproben

TRAUNSEE 2023		Algenfri	schgewic	ht [µg l ⁻¹]
TAXON	21.03.	21.06.	22.08.	20.11.	Mittel
Cyanobacteria					
Anabaena flos-aquae			0,44		0,11
Chroococcus limneticus			0	0	
Planktothrix rubescens	1,61		0,17		0,44
Snowella lacustris	0				
Chlorophyceae					
Botryococcus braunii			0		
Elakatothrix genevensis			0		
Koliella sp.			0		
Oocystis solitaria			0		
Planktosphaeria gelatinosa		0	0		
Scenedesmus brasiliensis			٥		
Scenedesmus linearis			0		
Willea irregularis			٥	0	
Conjugatophyceae		0.40	4.00	0.00	0.50
Cosmarium depressum		0,43	1,69	0,22	0,59
Xanthophyceae			o		
Gloeobotrys limneticus			ŭ		
Chrysophyceae Bitrichia chodatii		o	o		
		-	0		
Dinobryon bavaricum Dinobryon cylindricum		2,00	ŭ		0.50
Dinobryon divergens		1,43	28,64		0,50 7,52
Dinobryon sertularia		1,43	20,04	0	7,52
Dinobryon sociale		o			
Mallomonas elongata			0		
Mallomonas sp.		o	3,68		0,92
Pseudopedinella sp.	0		0,00		0,02
Uroglena sp.		o	2,20		0,55
Haptophyceae			, -		
Chrysochromulina parva	0,28	1,00	5,85		1,78
Dinophyceae	·	,	,		
Ceratium cornutum			0,63		0,16
Ceratium hirundinella		0,75	16,77	0,52	4,51
Dinophyceae indet.		2,69			0,67
Glenodinium sp.	1,37		0		0,34
Gymnodinium helveticum		1,71	4,10	2,26	2,02
Gymnodinium sp.	٥	3,57	٥	0	0,89
Gymnodinium uberrimum			0		
Peridinium sp.		2,08			0,52
Peridinium umbonatum - complex		1,26	0,64		0,48
Cryptophyceae					

Cryptomonas erosa	0,73	3,77	5,32	8,50	4,58
Cryptomonas marssonii		0	0	0,27	0,07
Cryptomonas sp.		0			
Plagioselmis nannoplanctica	21,93	25,79	8,71	15,37	17,95
Rhodomonas lens	10,76	5,01	8,54	11,14	8,86
Bacillariophyceae					
Achnanthes sp.	٥		0		
Asterionella formosa	1,79	18,93	12,57	1,84	8,78
Aulacoseira subarctica	0,13				0,03
Cyclotella cf. atomus	3,52				0,88
Cyclotella bodanica	0,71	1,74	3,06	0,71	1,55
Cyclotella cyclopuncta	4,95	26,64			7,90
Cyclotella distinguenda		0,98			0,25
Cyclotella intermedia			0		
Cyclotella kuetzingiana	0,12				0,03
Cyclotella ocellata		0			
Cyclotella cf. planctonica	0,07	4,13			1,05
Cyclotella radiosa		0			·
Cyclotella sp.			7,81	8,14	3,99
Diatoma ehrenbergii		3,61	,	0	0,90
Diatoma tenuis	0,17	- , -			0,04
Discostella glomerata	,,,,,	1,36			0,34
Eunotia sp.		0	0		-,- :
Fragilaria crotonensis	1,40	2,54	162,36	133,71	75,00
Fragilaria sp.	0,23	_,- :	, , , , ,		0,06
Nitzschia acicularis	0	0	0		-,
Nitzschia sp.	0				
Staurosira construens	1,17				0,29
Stephanocostis chantaica	0,11	0,14			0,06
Stephanodiscus alpinus	0,74	6,20			1,73
Stephanodiscus minutulus	0,30	0,18			0,12
Stephanodiscus neoastraea	3,72	2,33	0,75		1,70
Tabellaria flocculosa	٥,. ـ	2,00	0,.0		.,. 0
Ulnaria delicatissima	0,20	4,35			1,14
Ulnaria delicatissima var. angustissima	0,20	1,67	0,12		0,45
Ulnaria sp.		1,07	0,12	2,08	0,52
Ulnaria ulna	0,19	0,82		2,00	0,25
	0,13	0,02			0,20
Frischgewicht tot. (µg/l)	56,22	127,12	274,04	184,78	160,54
Biovolumen tot. (mm³/l)	0,056	0,127	0,274	0,185	0,161
abz. heterotrophe (mm³/l)	0,056	0,125	0,270	0,183	0,159
$1000 \mu g/l = 1 \text{mm}^3/l$,,,,,,	,,0	-,	,,	,,
Chlorophyll-a [µg/l]	0,2	1,4	1,2	0,7	0,88
Relativer Anteil Chlorophyll-a [%]	0,36	1,10	0,44	0,38	0,57
Totalitor Anton Omorophyn-a [70]	5,50	1,10	0,77	0,00	0,01
Anzahl Taxa / Termin	30	39	42	17	
	30	39	42	17	70
Anzahl Taxa insgesamt					70

Tab. 8.2.2. Zusammenfassung Algenklassen der quantitativen Phytoplanktonproben

TRAUNSEE 2023		Algenf	rischgewich	nt [µg l ⁻¹]	
Algenklasse	21.03.	21.06.	22.08.	20.11.	Mittel
Bacillariophyceae Centrales	14,38	43,70	11,62	8,85	19,64
Bacillariophyceae Pennales	5,14	31,93	175,04	137,64	87,44
Chlorophyceae					
Chrysophyceae		3,43	34,52		9,49
Conjugatophyceae Desmid.		0,43	1,69	0,22	0,59
Conjugatophyceae Zygnem.					
Cryptophyceae	33,43	34,57	22,57	35,29	31,47
Cyanobacteria coccal			0,44		0,11
Cyanobacteria filamentös	1,61		0,17		0,44
Dinophyceae	1,37	12,07	22,14	2,78	9,59
Euglenophyceae					
Haptophyceae	0,28	1,00	5,85		1,78
Prasinophyceae					
Ulvophyceae					
Xanthophyceae					
Phytoplankton indet.					
Frischgewicht tot. (µg/l)	56,2	127,1	274,0	184,8	160,5
Biovolumen tot. (mm³/l)	0,056	0,127	0,274	0,185	0,161
abz. heterotrophe (mm³/l)	0,056	0,125	0,270	0,183	0,159
$1000 \mu g/l = 1 \text{ mm}^3/l$					

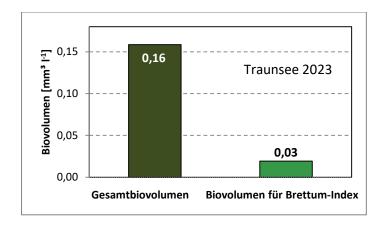
Tab. 8.2.3. Brettum Index:Werte der einzelnen Trophie-Klassen, für 2023 im Attersee quantifizierte Taxa

Taxon	TRAUNSEE 2023	Rebecca-ID	Brettui	m-Indexw	verte der e	einzelnen	Trophiek	lassen
Asterionella formosa Aulacoseira subarctica Ceratium comutum Ceratium hirundinella Ceratium depressum Ri 1818 Cosmarium depressum Ri 1818 Cryptomonas erosa Ri 1378 Cryptomonas marssonii Cyclotella bodanica (Cyclotella Cf. planctonica (Cyclotella distinguenda gr. Cyclotella distinguenda gr. Cyclotella distinguenda gr. Cyclotella distinguenda gr. Cyclotella bela kuelzingiana Cyclotella kuelzingiana Cyclotella kuelzingiana Cyclotella funis Ri 182 Cyclotella distinguenda gr. Cyclotella distinguenda gr. Cyclotella funis Ri 183 Cyclotella distinguenda gr. Cyclotella funis Ri 183 Ri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Taxon		<=5	5-8	8-15	15-30	30-60	>60
Aulacoseira subarctica Ceratium infundinella Ceratium comultum R1670 Chrysochromulina parva Chrysochromulina parva R1818 R1818 R1818 R1	Anabaena flos-aquae	R1536		1	1	2	3	3
Reference	Asterionella formosa	R0135						
Ref	Aulacoseira subarctica	R0033		1	8	1		
Chrysochromulina parva	Ceratium cornutum	R1670				•		
R1209	Ceratium hirundinella	R1672						
Cryptomonas erosa R1378 Cryptomonas marssonii R1382 Cyclotella bodanica R0040 Cyclotella bodanica/intermedia R0040 Cyclotella cf. atomus R0039 Cyclotella cf. atomus R0039 Cyclotella cyclopuncta R2570 Cyclotella cyclopuncta R2195 Cyclotella distinguenda gr. R2196 Cyclotella kuetzingiana R0046 Cyclotella kuetzingiana R0053 Cyclotella sp. R0053 Diatoma ehrenbergii R0184 Diatoma tenuis R1079 Dinobryon cylindricum R1073 Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria sp. R0238 Glenodinium sp. R1642 Gymnodinium sp.kl. R1654 Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium sp. nannoplanctica R2162 Plagioselmis nannoplanctica R2162 R1617 <	Chrysochromulina parva	R1818			1	3	4	2
Cryptomonas erosa R1378 Cryptomonas marssonii R1382 Cyclotella bodanica R0040 7 3 Cyclotella bodanica/intermedia R0040 7 3 Cyclotella cf. atomus R0039 Cyclotella cf. atomus R0039 Cyclotella cyclopuncta R2570 R2570 Cyclotella cyclopuncta R2195 7 3 Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella sp. R0063 R0063 R0063 R0063 R0063 R0063 R0063 R0184 R0189 R1 1 4		R1209	2	2	3		1	1
Cyclotella bodanica R0040 7 3 Cyclotella bodanica/intermedia R0040 7 3 Cyclotella cf. planctonica R2570 Cyclotella cf. planctonica R2570 Cyclotella cyclopuncta R2195 7 3 Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella sp. R0053 R0053 1 1 4 4 Cyclotella sp. R0053 R0184 3 7 7 2 1 1 4	•	R1378						
Cyclotella bodanica R0040 7 3 Cyclotella bodanica/intermedia R0040 7 3 Cyclotella cf. planctonica R2570 Cyclotella cf. planctonica R2570 Cyclotella cyclopuncta R2195 7 3 Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella sp. R0053 R0053 1 1 4 4 Cyclotella sp. R0053 R0184 3 7 7 2 1 1 4		R1382						
Cyclotella bodanica/intermedia R0040 7 3 Cyclotella cf. atomus R0039 R2570 Cyclotella cf. planctonica R2570 Cyclotella cyclopuncta R2195 7 3 Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella kuetzingiana R0046 R0053 R0053 R0062 R0053 Diatoma ehrenbergii R0184 3 7 7 Diatoma ehrenbergii R0184 3 7 7 Dinobryon cylindricum R1073 R1074		R0040	7	3				
Cyclotella of. atomus R0039 Cyclotella of. planctonica R2570 Cyclotella of. planctonica R2195 Cyclotella distinguenda gr. R2196 Cyclotella kuetzingiana R0046 Cyclotella sp. R0053 Diatoma ehrenbergii R0184 Diatoma tenuis R0189 Dinobryon cylindricum R1070 Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. kl. R1654 Mallomonas sp. R1109 Peridinium umbonatum - complex R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 R1647 1 1 R2169 2 2 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0076 Stephanodiscus minutulus R0082 <tr< td=""><td><u> </u></td><td>R0040</td><td>7</td><td></td><td></td><td></td><td></td><td></td></tr<>	<u> </u>	R0040	7					
Cyclotella of. planctonica R2570 Cyclotella cyclopuncta R2195 Cyclotella distinguenda gr. R2196 Cyclotella kuetzingiana R0046 Cyclotella sp. R0053 Diatoma ehrenbergii R0184 Diatoma tenuis R0189 Dinobryon cylindricum R1070 Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R1642 Gymnodinium sp. kl. R1654 Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium umbonatum - complex R1699 Peridinium sp. R1617 Planktothrix rubescens R1617 R1407 R2 Stephanodiscus alpinus R0075 Stephanodiscus alpinus R0075 Stephanodiscus minutulus R0082 Stephanodiscus neoastraea R0083 Ulnaria delicatissima var. angustissima R2174 Ulnaria delicati	-							
Cyclotella cyclopuncta R2195 7 3 Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella kuetzingiana R0046 R0046 R0046 Cyclotella sp. R0184 3 7 Diatoma ehrenbergii R0184 3 7 Diatoma tenuis R0189 1 1 4 4 Dinobryon cylindricum R1070 7 2 1 1 4 4 4 1 1 4 4 4 4 1 1 4	-							
Cyclotella distinguenda gr. R2196 8 1 1 Cyclotella kuetzingiana R0046 R0053 Diatoma ehrenbergii R0184 3 7 Diatoma tenuis R0189 1 1 4 4 Dinobryon cylindricum R1070 7 2 1 1 4 4 Dinobryon divergens R1073 R1073 Dinophyceae indet. R1073 R1074			7	3				
Cyclotella kuetzingiana R0046 Cyclotella sp. R0053 Diatoma ehrenbergii R0184 Diatoma tenuis R0189 Dinobryon cylindricum R1070 Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. R1642 Gymnodinium sp.kl. R1654 Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 1 1 3 4 1 Staurosira construens R2169 2 2 6 Stephanocostis chantaica R0075 8 3 4 3 Stephanodiscus alpinus R0076 8 3 4 3 Stephanodiscus minutulus R0082 3 4 3 <tr< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></tr<>					1			
Cyclotella sp. R0053 Diatoma ehrenbergii R0184 Diatoma tenuis R0189 Dinobryon cylindricum R1070 Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. R1642 Gymnodinium sp. R1664 Mallomonas sp. R1109 Peridinium umbonatum - complex R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 R1407 R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0076 Stephanodiscus minutulus R0082 Stephanodiscus neoastraea R0083 Ulnaria delicatissima var. angustissima R2173 Ulnaria delicatissima var. angustissima R2498 Ulnaria ulna R2175					•			
Diatoma ehrenbergii R0184 3 7 Diatoma tenuis R0189 1 1 4 4 Dinobryon cylindricum R1070 7 2 1 4 4 Dinobryon divergens R1073 R1073 R1073 R1073 R1073 R1073 R1073 R1073 R1073 R1074 R1	,							
Diatoma tenuis R0189 1 1 4 4 Dinobryon cylindricum R1070 7 2 1 1 4 4 Dinobryon divergens R1073 R1074 R1074 <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>7</td> <td></td>	,					3	7	
Dinobryon cylindricum R1070 7 2 1 Dinobryon divergens R1073 R1073 Dinophyceae indet. R1708 R1708 Discostella glomerata R2058 6 3 1 Fragilaria crotonensis R0223 Fragilaria sp. R0238 6 3 1 Glenodinium sp. R0238 R1642 2 5 3 C Gymnodinium sp. R1642 2 5 3 C C Gymnodinium sp. R1654 1 5 2 1 1 A	_				1			4
Dinobryon divergens R1073 Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. R1642 Gymnodinium sp.kl. R1654 Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 R1407 R1407 Staurosira construens R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0075 Stephanodiscus meoastraea R0082 Ulnaria delicatissima R2173 Ulnaria delicatissima var. angustissima R2174 Ulnaria ulna R2498 Ulnaria ulna R2175			7	2		•	•	<u>.</u>
Dinophyceae indet. R1708 Discostella glomerata R2058 Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. R1642 2 5 3 Gymnodinium sp.kl. R1654 1 5 2 1 1 Mallomonas sp. R1109 R1699 Peridinium umbonatum - complex R1699 R1699 Peridinium umbonatum - complex R1699 R1699 R1699 R1699 Peridinium umbonatum - complex R2162 R2169 R2 2 2 6 R2169 R2 2 2 6 R2169 R2 10 R2169 R2 2 2 6 R2169 R2 2 2			•	_	·			
Discostella glomerata R2058 6 3 1 Fragilaria crotonensis R0223 R0238 R0238 Fragilaria sp. R1642 2 5 3 Gymnodinium sp. kl. R1654 1 5 2 1 1 Mallomonas sp. R1109 R1699 Peridinium umbonatum - complex R1699 Peridinium umbonatum - complex R1699 T 2 1 1 1 3 4 1 1 3 4 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 3 4 1 1 1 1 3 4 1 1 1 2 2 6 3 4 3 3 4 3 3 4 <								
Fragilaria crotonensis R0223 Fragilaria sp. R0238 Glenodinium sp. R1642 2 5 3 Gymnodinium sp.kl. R1654 1 5 2 1 1 Mallomonas sp. R1109 R1699 Peridinium umbonatum - complex R1699 Peridinium umbonatum - complex R1903 7 2 1 1 1 3 4 1 1 1 3 4 1			6	3	1			
Fragilaria sp. R0238 Glenodinium sp. R1642 Gymnodinium sp.kl. R1654 Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 Rhodomonas lens R1407 Staurosira construens R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0082 Stephanodiscus minutulus R0082 Stephanodiscus neoastraea R0083 Ulnaria delicatissima R2173 Ulnaria delicatissima var. angustissima R2174 Ulnaria ulna R2498 Ulnaria ulna R2175	_		·					
Glenodinium sp. R1642 2 5 3 Gymnodinium sp.kl. R1654 1 5 2 1 1 Mallomonas sp. R1109 R1699 Peridinium umbonatum - complex R1699 R1699 Peridinium umbonatum - complex R1699 R1699 Peridinium umbonatum - complex R2162								
Gymnodinium sp.kl. R1654 1 5 2 1 1 Mallomonas sp. R1109 R1699 R1699 R1699 R1699 R1699 R1699 R1699 R1699 R1699 R1690 R1690 <td< td=""><td></td><td></td><td></td><td>2</td><td>5</td><td>3</td><td></td><td></td></td<>				2	5	3		
Mallomonas sp. R1109 Peridinium sp. R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 Rhodomonas lens R1407 Staurosira construens R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0076 Stephanodiscus minutulus R0082 Stephanodiscus neoastraea R0083 Ulnaria delicatissima R2173 Ulnaria delicatissima var. angustissima R2174 Ulnaria ulna R2498 Ulnaria ulna R2175	1 · · · · · · · · · · · · · · · · · · ·		1				1	
Peridinium sp. R1699 Peridinium umbonatum - complex R1903 Plagioselmis nannoplanctica R2162 Planktothrix rubescens R1617 Planktothrix rubescens R1617 Rhodomonas lens R1407 Staurosira construens R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0076 Stephanodiscus minutulus R0082 Stephanodiscus neoastraea R0083 Ulnaria delicatissima R2173 Ulnaria delicatissima var. angustissima R2174 Ulnaria sp. R2498 Ulnaria ulna R2175			•		_	·	-	
Peridinium umbonatum - complex Plagioselmis nannoplanctica Planktothrix rubescens R1617 Rhodomonas lens Staurosira construens Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus R0076 Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria sp. Ulnaria ulna R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R1903 R2162 R2162 R2162 R2162 R2162 R2162 R2162 R2169 R2 2 2 6 R3 4 3 R3 R2173 R2173 Ulnaria delicatissima R2173 Ulnaria ulna R2174 R2175	•							
Plagioselmis nannoplanctica Planktothrix rubescens R1617 Rhodomonas lens Staurosira construens Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus R0082 Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria sp. Ulnaria ulna R2162 R1617 1 1 3 4 1	· · · · · · · · · · · · · · · · · · ·		7	2		1		
Planktothrix rubescens Rhodomonas lens Staurosira construens Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Roman Roma	-		•	_		·		
Rhodomonas lens Staurosira construens R2169 R2169 Stephanocostis chantaica R0075 Stephanodiscus alpinus R0076 Stephanodiscus minutulus R0082 R0083 Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria delicatissima var. angustissima R2173 Ulnaria sp. Ulnaria ulna R2175	-		1	1	3	4	1	
Staurosira construens Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria sp. Ulnaria ulna R2169 R0075 R0075 R0076 R0082 R0082 R0083 1 2 4 3 Ulnaria delicatissima R2173 R2174 R2498 R2498 Ulnaria ulna R2175			•	•	J	•	•	
Stephanocostis chantaica Stephanodiscus alpinus Stephanodiscus minutulus R0076 Stephanodiscus minutulus R0082 R0083 Stephanodiscus neoastraea Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria sp. Ulnaria ulna R2174 R2498 Ulnaria ulna R2175					2	2	6	
Stephanodiscus alpinus Stephanodiscus minutulus Stephanodiscus minutulus Stephanodiscus neoastraea R0082 R0083 R0083 1 2 4 3 Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria sp. Ulnaria ulna R2174 R2498 Ulnaria ulna R2175					_	_		
Stephanodiscus minutulus Stephanodiscus neoastraea R0082 R0083 R1 2 4 3 Ulnaria delicatissima Ulnaria delicatissima var. angustissima Ulnaria sp. Ulnaria ulna R2174 R2498 Ulnaria ulna R2175	· ·							
Stephanodiscus neoastraea R0083 1 2 4 3 Ulnaria delicatissima R2173 Ulnaria delicatissima var. angustissima R2174 2 3 3 2 Ulnaria sp. R2498 Ulnaria ulna R2175	·					3	4	3
Ulnaria delicatissima Ulnaria delicatissima var. angustissima R2173 R2174 Ulnaria sp. Ulnaria ulna R2175 R2175				1	2			
Ulnaria delicatissima var. angustissima R2174 2 3 3 2 Ulnaria sp. R2498 Ulnaria ulna R2175	The state of the s			•	_		- 3	
Ulnaria sp. R2498 Ulnaria ulna R2175			2	3	3	2		
Ulnaria ulna R2175			~	- 0	0			
	•							
	Uroglena sp.	R1151		3	3	3	1	

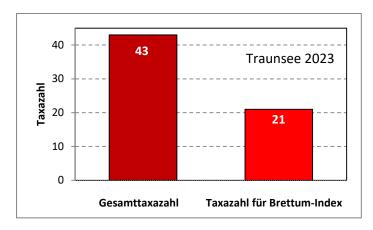
Relativer Anteil quantifizierter Taxa für Brettum Index [%]	48,8
Relativer Anteil des Biovolumen der eingestuften Taxa am Gesamtbiovolumen [%]	12,2

Tab. 8.2.4. Prägende trophische Indikatoren (Brettum Scores) und quantitativ wichtige (Biovolums-Anteil > 3 %) Arten - Traunsee 2023

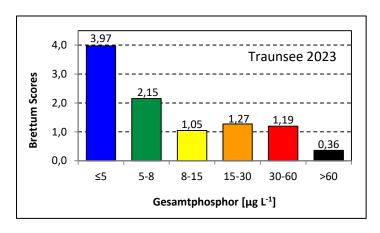
TRAUNSEE	Rebecca-								Rel.
Taxon	ID	Biovolumen		Е	Brettum	-Indexw	erte		Anteil
März		[mm ³ L ⁻¹]	<=5	5-8	8-15	15-30	30-60	>60	[%]
Cyclotella cyclopuncta	R2195	0,0050	7	3					8,81%
Stephanodiscus neoastraea	R0083	0,0033		1	2	4	3		6,61%
Plagioselmis nannoplanctica	R2162	0,0219							39,02%
Rhodomonas lens	R1407	0,0108							19,15%
Cyclotella cf. atomus	R0039	0,0035							6,27%
Asterionella formosa	R0135	0,0018							3,18%
Juni									
Cyclotella cyclopuncta	R2195	0,0157	7	3					21,24%
Plagioselmis nannoplanctica	R2162	0,0258							20,56%
Asterionella formosa	R0135	0,0189							15,09%
Stephanodiscus alpinus	R0076	0,0062							4,95%
Rhodomonas lens	R1407	0,0050							3,99%
Ulnaria delicatissima	R2173	0,0043							3,46%
Cyclotella cf. planctonica	R2570	0,0041							3,29%
Cryptomonas erosa	R1378	0,0038							3,01%
August									
Fragilaria crotonensis	R0223	0,1624							60,14%
Dinobryon divergens	R1073	0,0286							10,61%
Ceratium hirundinella	R1672	0,0168							6,21%
Asterionella formosa	R0135	0,0126							4,66%
Plagioselmis nannoplanctica	R2162	0,0087							3,23%
Rhodomonas lens	R1407	0,0085							3,16%
November									
Fragilaria crotonensis	R0223	0,1337							73,26%
Plagioselmis nannoplanctica	R2162	0,0154							8,42%
Rhodomonas lens	R1407	0,0111							6,11%
Cryptomonas erosa	R1378	0,0085							4,66%
Cyclotella sp.	R0053	0,0050							4,46%

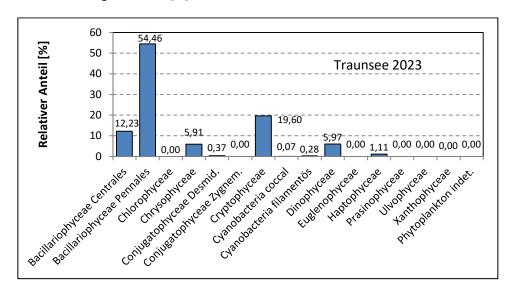

^{*}N.B.:Geringfügige Abweichungen des relativen Anteils einzelner Taxa am Gesamt-Biovolumen[%], im Vergleich zu den Werten in den Prüfprotokollen (4. Quantitative Analyse - Utermöhl-Zählung), ergeben sich aus den in obiger Tabelle bereits abgezogenen Anteilen heterotropher Taxa!

8.3. Grafische Darstellungen


Jahresmittel EQR:

See	TRA	AUNSEI	E
Jahr		2023	
IC Seentyp	L-AL3	range	1
		-	
Chlorophyll-a [µg L ⁻¹]	0,88		
Biovolumen [mm ³ L ⁻¹]	0,16		
BV für Brettum-Index [mm ³ L ⁻	0,02	12%	
Таха	43	, ,	_!
Taxa für Brettum-Index	21	49%	
Brettum-Index	4,54		
	Ref.wert	EQR	nEQR
Chlorophyll-a	1,50	1,71	1,00
Biovolumen	0,20	1,26	1,00
Brettum-Index	5,29	0,86	0,84
EQR gesamt	0,918	sehi	r gut


Anteil Biovolumen für die Berechnung des Brettum-Index:



Verteilung Brettum-Scores über die sechs Phosphor-Trophie-Klassen:

Biovolumen Algenklassen [%]:

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Traunsee 2023-03-21

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	TRA2023-01
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	ben									
Gewässername		Trau	insee		Rechtswert		48	4.528		
Messstellenname					Hochwert		304.807			
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer (Grundzustand	oli	oligotroph		
Detail WK ID					Höhe Messpu	ınkt [m]	42	3		
	Zu iewe	eils r	mindestens 4	4 Terr	ninen pro Un	ntersuchuna	siah	r:		
Datum, Uhrzeit, Pro						<u> </u>				
Datum Probenahme	2023-03		, , , , , , , , , , , , , , , , , , , ,		enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IGF		
Limnologisch charakteristischer Zeitpunkt **			punkt **	Frühja	ahrszirkulation		8			
* wenn Proben nicht vom selben F ** Frühjahrszirkulation, Beginn der			n. Höhepunkt der Son	nmerstaar	nation. Beginn der Herl	bstzirkulation				
Witterung		J	,		, J					
vor der Probenahi			me		während de	r Prol	Probenahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichtig	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der			□ ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest				Sonstiges (OI Pollenflug)	berflächenfilm,				
Trübung, Art der Trübung **					Thermokline	[m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		12,4	4	
Algenblüten, Auftriebsfl	ocken		ja □	nein		uphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	neralisc	ch, organisch, Calcitfä	rbung						
Probenahme										
Probenahmetiefe der quantitative Probe [m; vonbis]		en	0 – 21 m	0 – 21 m				x Mischprobe □ integrierende Probe		
					wenn Mischpro	be: Angabe de	Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe [u		•								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Analy	Qualitative Analyse										
Probennummer		TRA2023-	-01	Bearbeite	rln	Christian Jers	abek				
Datum der Analyse		2023-06	-22	Probena	rt	☐ lebend		x fixiert			
Quantitative A	Quantitative Analyse										
Probennummer		TRA	2023-01	Nachf Probe		g der quantitati	ven	□ ja		x nein	
BearbeiterIn	BearbeiterIn Christian Jersabek			wenn	ja, war	ın					
Datum der Analyse		2023	3-06-22	Kamn	nertyp			Utermöh	I		
Zeitraum zw. Probenahme und Analyse 97 Tage			Kamn	nervolu	men		10 ml				
	Ausgegossenes Volumen der Probe				•	100 ml					
Quantitative Probe:	Zählstra	ategie	T								
Proben-Nr.	Kamn	Zählstrategie						len / Felde		T	
			Diagonalen/Felder	Obj. 53	(Obj. 10x	0	bj. 25x	Obj. 40x		
TRA2023-01	Uterm	öhl	Ganze Kammer	1							
			Diagonale/Felder			3 D		45 F	24 F		
Diatomeenprobe	•										
Herkunft											
wenn eigene Diatomee	nprobe										
Probennummer		TRA2023	-01_Diat	Volur	men						
Präparation	:	x Glühpr	äparat	□ chemisch	ne Oxida	ation					
Optische Ausrüs	tung d	les Zäh	lmikroskops und D	urchlicht	mikro	oskops für d	lie D	iatomee	en-Analys	e	
Zählmikroskop (Marke/Typ)					Zeiss Telaval 3, Jena						
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)					Leitz Diaplan (ja/ja)						
Stärkstes Objektiv (Vergrößerung, num	erische	Apertu	r)	10	100x (oil, 1,25)						

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: TRA2023-01

TRA2023-03-21	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria Planktothrix rubescens Snowella lacustris	82	100,000	0,820	1963	1,61	2,86
Chrysophyceae Pseudopedinella sp.						
Haptophyceae						
Chrysochromulina parva	4	0,635	6,297	45	0,28	0,50
Dinophyceae		·	·			·
Glenodinium sp. Gymnodinium sp.	3	3,078	0,975	1410	1,37	2,44
Cryptophyceae						
Cryptomonas erosa	6	14,838	0,404	1816	0,73	1,31
Plagioselmis nannoplanctica	277	0,635	436,048	50	21,93	39,02
Rhodomonas lens	17	0,635	26,761	402	10,76	19,15
Bacillariophyceae						
Achnanthes sp.						
Asterionella formosa	368	100,000	3,680	486	1,79	3,18
Aulacoseira subarctica	5	14,838	0,306	432	0,13	0,24
Cyclotella cf. atomus	33	0,635	51,948	68	3,52	6,27
Cyclotella bodanica	3	100,000	0,030	23560	0,71	1,26
Cyclotella cyclopuncta	14	0,635	21,645	229	4,95	8,81
Cyclotella kuetzingiana	0,4	14,838	0,027	4618	0,12	0,22
Cyclotella cf. planctonica	0,4	14,838	0,024	2908	0,07	0,12
Diatoma tenuis	9	100,000	0,090	1872	0,17	0,30
Fragilaria crotonensis	212	100,000	2,119	659	1,40	2,48
Fragilaria sp. Nitzschia acicularis Nitzschia sp.	3	14,838	0,202	1140	0,23	0,41
Staurosira construens	578	100,000	5,778	203	1,17	2,08
Stephanocostis chantaica	1	0,635	1,732	65	0,11	0,20
Stephanodiscus alpinus	3	14,838	0,212	3465	0,74	1,31
Stephanodiscus minutulus	2	0,635	2,597	116	0,30	0,54
Stephanodiscus neoastraea gr.	5	14,838	0,337	9907	3,34	5,94
Stephanodiscus neoastraea kl. Tabellaria flocculosa	1	14,838	0,074	5094	0,38	0,67
Ulnaria delicatissima	10	14,838	0,674	292	0,20	0,35
Ulnaria ulna	2	100,000	0,020	9355	0,19	0,33
Gesamt		,	562,80		56,21	100,00
			10 ³ L ⁻¹		0,056	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: TRA2023-01_Diato

Taxon	Rebecca-			Größ	enklassen	[µm]			
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37	
Aulacoseira subarctica	R0033	3							
Cyclotella bodanica	R0040						5	1	
Cyclotella cf. atomus	R0039	36							
Cyclotella cf. planctonica	R2570					2			
Cyclotella cyclopuncta	R2195		17	2					
Cyclotella kuetzingiana	R0046				1	3			
Stephanocostis chantaica	R0075	3							
Stephanodiscus alpinus	R0076				2	3			
Stephanodiscus minutulus	R0082	4	2						
Stephanodiscus neoastraea	R0083					9	3		
Summe Schalen pro Größen	klasse	46	19	2	3	17	8	1	
Gesamtsumme Schalen 96									
Anteil centrischer Diatomeen	am Gesamt-E	Biovolum	en		25,6 %				

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Traunsee 2023-06-21

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	TRA2023-02		
Auftraggeber	Amt der Oberösterreichischen Land	esregierung			

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Trau	insee		Rechtswert		48	4.528		
Messstellenname					Hochwert		30	4.807		
(GZÜV-)Messstellen_ID					Median		31	31		
Detail WK Name					Trophischer G	Grundzustand	oli	gotroph		
Detail WK ID					Höhe Messpu	nkt [m] 423				
Z	Zu jew	eils r	mindestens 4	4 Terr	ninen pro Un	tersuchung	sjah	r:		
Datum, Uhrzeit, Probenahme-Team, Prüflabor										
Datum Probenahme	2023-0		·		enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		rwirtschaft IGF		
Limnologisch charakteri	istische	r Zeitı	punkt **	Beginn	n der Sommerstagi					
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n. Höhepunkt der Son	nmerstaan	ation. Beginn der Herb	estzirkulation				
Witterung			.,		,g					
vor der Probenah			me		während de	r Prol	oenahme			
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichti	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der F	Probenahme		□ ja □	nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindes	t			Sonstiges (Ob Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		8,4		
Algenblüten, Auftriebsfl	ocken		ja 🗆	nein	Grenze der eu [m] (Kompens	iphotischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	ineralisc	ch, organisch, Calcitfä	rbung	•					
Probenahme										
Probenahmetiefe der quantitativen Probe [m; vonbis] 0 – 21 m		0 – 21 m		Art der Probenahme der quantitativen Probe			x Mischprobe ☐ integrierende Probe			
					wenn Mischprol	be: Angabe de				
Maschenweite für die qu Phytoplankton-Probe [µı		•				<u>-</u>				

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Anal	Qualitative Analyse										
Probennummer		TRA2023	-02	Bear	beiterIn	Christian Jers	abek				
Datum der Analyse		2023-12-	10	Prob	enart	☐ lebend		x fixiert			
Quantitative Ana	alyse										
Probennummer		TRA2	2023-02		Nachfixierui Probe	ng der quantitati	ven	□ ja		x nein	
BearbeiterIn		Chris	stian Jersabek	١.	wenn ja, wa	nn					
Datum der Analyse			3-12-10	ı	Kammertyp			Utermöh	nl		
Zeitraum zw. Probenał Analyse	nme un	d 175	Гаде	ı	Kammervolu	ımen		10 ml			
					Ausgegossei Probe	nes Volumen dei	r	100 ml			
Quantitative Probe:	Zählst	rategie	I								
Proben-Nr.	Kam	mertyp	Zählstrategie					len / Felde	1	1	
			Diagonalen/Felder	0	bj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x		
TRA2023-02	Uterr	nöhl	Ganze Kammer		1						
			Diagonale/Felder			3 D		7,30 F	33 F		
Diatomeenprobe	9										
Herkunft											
wenn eigene Diatomee	enprobe	?									
Probennummer		TRA2023	-02_Diat	,	Volumen						
Präparation		x Glühpr	äparat 🗆 o	chemis	che Oxidati	on					
Optische Ausrüs	tung	des Zäh	lmikroskops und D	urchl	lichtmikr	oskops für d	die D	iatome	en-Analys	se	
Zählmikroskop (Marke/Typ)					Zeiss Tel	aval 3, Jena					
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, Dl ja/nein)					DIC Leitz Diaplan (ja/ja)						
Stärkstes Objektiv (Vergrößerung, num	erisch	e Apertu	r)		100x (oil	, 1,25)					

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: TRA2023-02

TRA2023-06-21	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolumen [µm³]	FW [µg l¹]	Rel. Anteil [%]
Chlorophyceae						
Planktosphaeria gelatinosa						
Conjugatophyceae						
Cosmarium depressum	2	14,838	0,135	3188	0,43	0,34
Chrysophyceae						
Bitrichia chodatii						
Dinobryon cylindricum	9	1,847	4,873	410	2,00	1,57
Dinobryon divergens	12	1,847	6,498	220	1,43	1,12
Dinobryon sociale						
Mallomonas sp.						
Uroglena sp.						
Haptophyceae						
Chrysochromulina parva	22	0,873	25,187	40	1,00	0,79
Dinophyceae						
Ceratium hirundinella	2	100,000	0,020	37691	0,75	0,59
Dinophyceae indet.	3	14,838	0,202	13294	2,69	2,11
Gymnodinium helveticum	3	14,838	0,202	8434	1,71	1,34
Gymnodinium sp.kl.	10	1,847	5,415	659	3,57	2,81
Peridinium sp.	5	100,000	0,050	41690	2,08	1,64
Peridinium umbonatum - complex	6	14,838	0,404	3128	1,26	0,99
Cryptophyceae		·				
Cryptomonas erosa + sp.	30	14,838	2,022	1867	3,77	2,97
Cryptomonas marssonii			·		,	ŕ
Cryptomonas sp.						
Plagioselmis nannoplanctica	222	0,873	254,159	101	25,79	20,29
Rhodomonas lens	16	0,873	18,318	273	5,01	3,94
Bacillariophyceae			,		,	,
Asterionella formosa	408	14,838	27,497	689	18,93	14,89
Cyclotella bodanica	6	100,000	0,060	28978	1,74	1,37
Cyclotella cyclopuncta gr.	42	2,052	20,370	773	15,74	12,38
Cyclotella cyclopuncta	42	0,873	47,626	229	10,90	8,58
Cyclotella cf. planctonica	13	14,838	0,887	4658	4,13	3,25
Cyclotella distinguenda gr.	0,5	14,838	0,032	1831	0,06	0,05
Cyclotella distinguenda kl.	2	2,052	1,072	862	0,92	0,73
Cyclotella ocellata		,	, -		,	, -
Cyclotella radiosa						
Diatoma ehrenbergii	18	14,838	1,213	2979	3,61	2,84
Discostella glomerata	5	0,873	5,953	229	1,36	1,07
Eunotia sp.		-,	- , ,		,	,
Fragilaria crotonensis	368	100,000	3,680	690	2,54	2,00
Nitzschia acicularis		,	-,		_,	_,

					mm³ L ⁻¹	
			10 ³ L ⁻¹		0,127	%
Gesamt			441,17		127,12	100,00
Ulnaria ulna	8	100,000	0,080	10304	0,82	0,65
Ulnaria delicatissima var. angustissima	61	100,000	0,610	2741	1,67	1,32
Ulnaria delicatissima	95	14,838	6,402	679	4,35	3,42
Stephanodiscus neoastraea	6	14,838	0,380	6133	2,33	1,83
Stephanodiscus minutulus	3	0,873	3,572	49	0,18	0,14
Stephanodiscus alpinus	28	14,838	1,869	3320	6,20	4,88
Stephanocostis chantaica	2	0,873	2,381	57	0,14	0,11

5. Diatomeenanalyse

Laborinterne Probennummer: TRA2023-02_Diato

Taxon	Rebecca-			Größ	Senklassen	en [µm]				
	ID	4 - <7	7 - <11	11 - <16	16 - <21	21 - <30	30 - <37	>37		
Cyclotella bodanica	R0040						10	5		
Cyclotella cf. planctonica	R2570				7	5	4			
Cyclotella cyclopuncta	R2195	7	66	71						
Cyclotella distinguenda	R2196			6	3					
Discostella glomerata	R2058		7							
Stephanocostis chantaica	R0075	5								
Stephanodiscus alpinus	R0076			2	26	19				
Stephanodiscus minutulus	R0082	6								
Stephanodiscus neoastraea	R0083					6	3			
Summe Schalen pro Größen	klasse	18	73	79	36	30	17	5		
Gesamtsumme Schalen		258								
Anteil centrischer Diatomeen		34,4 %								

Anmerkungen: Die Artbestimmung centrischer Diatomeen erfolgte nach Krammer & Lange-Bertalot (1991) und Houk, Klee & Tanaka (2010, 2014, 2017). Es bestehen in der modernen Literatur z. T. erhebliche Unterschiede in taxonomischer Zuordnung (Synonyme, Kombinationen) oder in der Nomenklatur (Namensänderungen valider Arten) einzelner Arten. Sofern solche Änderungen Arten betreffen die in der Liste eingestufter Arten des hier angewendeten Bewertungssystem aufscheinen, wird der in dieser Liste verwendete Name beibehalten.

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Traunsee 2023-08-22

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	TRA2023-03
Auftraggeber	Amt der Oberösterreichischen Land	esregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angab	oen										
Gewässername		Trau	insee		Rechtswert		48	4.528			
Messstellenname					Hochwert		30	4.807			
(GZÜV-)Messstellen_ID					Median		31				
Detail WK Name					Trophischer (Grundzustand	oligotroph				
Detail WK ID					Höhe Messpu	nkt [m]	42	3			
Z	Zu jewe	ils r	mindestens 4	4 Teri	ninen pro Un	itersuchung	sjah	r:			
Datum, Uhrzeit, Pro	benahi	me-	Team, Prüfla	bor							
Datum Probenahme	2023-08	-22		Prob	Probenahme-Team						
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IC	3F		
	nologisch charakteristischer Zeitpunkt ** Höhepunkt d					stagnation					
* wenn Proben nicht vom selben Prüflabor gezogen ** Frühjahrszirkulation, Beginn der Sommerstagnation, Höhepunkt der Son					nation, Beginn der Herl	ostzirkulation					
Witterung											
vor der Probena				me	während de			r Probenahme			
Wetter											
Wind											
Niederschlag		Da	atum:								
Lufttemperatur [°C]											
Wolkenbedeckung [%]											
Hydrographie, Trüb	ung, F	ärbı	ung, Schicht	ung							
Hochwassereinfluss (de	r wichtig	sten	Zubringer)								
vor der Probenahme			ja □	nein	während der	Probenahme		□ ja	☐ nein		
Wasserstand aktuell (zur Schätzung auf m ü.A.)*	mindest				Sonstiges (Ol Pollenflug)	berflächenfilm,					
Trübung, Art der Trübung **					Thermokline	[m]					
Färbung					Sichttiefe/Sec	chi-Tiefe [m]			5,2		
Algenblüten, Auftriebsflo	ocken		ja □	nein		uphotischen Zo sationsebene)	ne				
* z.B. hoch, mittel, niedrig	* * min	eralisc	ch, organisch, Calcitfä	rbung	1			•			
Probenahme											
Probenahmetiefe der quantitativen Probe [m; vonbis]			0 – 21 m		Art der Probenahme der quantitativen Probe			x Mischprobe ☐ integrierende Probe			
					wenn Mischpro	be: Angabe de	Tiefe	enstufen			
Maschenweite für die qu Phytoplankton-Probe [µr											

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Anal	Qualitative Analyse										
Probennummer		TRA2023	-03	Bear	rbeiterIn	Christian Jers	abek				
Datum der Analyse		2024-01-	11	Prob	enart	☐ lebend		x fixiert			
Quantitative Ana	alyse										
Probennummer		TRA2	2023-03		Nachfixierui Probe	ng der quantitati	ven	□ ja		x nein	
BearbeiterIn		Chris	stian Jersabek	,	wenn ja, wa	nn					
2023-06-06		2024	-01-11	1	Kammertyp			Utermöh	nl		
Zeitraum zw. Probenał Analyse	nme un	d 145	Гаде	1	Kammervolı	umen		10 ml			
					Ausgegossei Probe	nes Volumen dei	r	100 ml			
Quantitative Probe: Zählstrategie											
Proben-Nr.	Kam	mertyp	Zählstrategie					len / Felde			
			Diagonalen/Felder	C	Obj. 5x	Obj. 10x	0	bj. 25x	Obj. 40x		
TRA2023-03	Utern	nöhl	Ganze Kammer		1				40.04.		
			Diagonale/Felder			3 D		30 F	10,21 F		
Diatomeenprobe	2										
Herkunft											
wenn eigene Diatomee	nprobe	?									
Probennummer		TRA2023	-03_Diat		Volumen						
Präparation		x Glühpr	äparat 🗆	chemi	sche Oxidati	ion					
Optische Ausrüs	tung	des Zäh	lmikroskops und D	urch	lichtmikr	oskops für d	lie D	iatome	en-Analys	se	
Zählmikroskop (Marke/Typ)					Zeiss Teld	aval 3, Jena					
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)				, DIC	Leitz Diaplan (ja/ja)						
Stärkstes Objektiv (Vergrößerung, num	erisch	e Apertui	r)		100x (oil,	1,25)					

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: TRA2023-03

TRA2023-08-22	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻]	Zellvolu- men [µm³]	FW [µg l¹]	Rel. Anteil [%]
Cyanobacteria						
Anabaena flos-aquae	431	100,000	4,308	103	0,44	0,16
Chroococcus limneticus						
Planktothrix rubescens	8	100,000	0,080	2082	0,17	0,06
Chlorophyceae						
Botryococcus braunii						
Elakatothrix genevensis						
Koliella sp.						
Oocystis solitaria						
Planktosphaeria gelatinosa						
Scenedesmus brasiliensis						
Scenedesmus linearis						
Willea irregularis						
Conjugatophyceae						
Cosmarium depressum	9	14,838	0,607	2790	1,69	0,62
Xanthophyceae		,			,	- , -
Gloeobotrys limneticus						
Chrysophyceae						
Bitrichia chodatii						
Dinobryon bavaricum						
Dinobryon divergens	193	1,436	134,359	213	28,64	10,45
Mallomonas elongata		.,	,		_0,0 :	
Mallomonas sp.	8	2,052	3,899	943	3,68	1,34
Uroglena sp.	12	0,556	21,589	102	2,20	0,80
Haptophyceae		0,000			_,	
Chrysochromulina parva	35	0,265	132,231	44	5,85	2,14
Dinophyceae	00	0,200	102,201	77	0,00	۷,۱٦
Ceratium cornutum	1	100,000	0,010	63076	0,63	0,23
Ceratium hirundinella	38	100,000	0,380	44132	16,77	6,12
Glenodinium sp.		100,000	0,000	77102	10,77	0,12
Gymnodinium helveticum	6	14,838	0,404	10135	4,10	1,50
Gymnodinium sp.		14,000	0,707	10100	7,10	1,00
Gymnodinium uberrimum						
Peridinium umbonatum - complex	3	14,838	0,202	3153	0,64	0,23
Cryptophyceae	3	14,000	0,202	3133	0,04	0,20
Cryptomonas erosa	46	14,838	3,100	1715	5,32	1,94
Cryptomonas marssonii	40	17,000	5,100	1713	3,32	1,34
Plagioselmis nannoplanctica	105	0,556	188,902	46	8,71	3,18
Rhodomonas lens	16	0,556	28,785	297	8,54	3,12
Bacillariophyceae	10	0,000	20,700	231	0,54	3,12
Achnanthes sp.						

Asterionella formosa	288	14,838	19,409	648	12,57	4,59
Cyclotella bodanica/intermedia	17	100,000	0,170	18006	3,06	1,12
Cyclotella intermedia						
Cyclotella gr.	12	14,838	0,809	3577	2,89	1,06
Cyclotella kl.	17	0,556	30,584	161	4,92	1,79
Eunotia sp.						
Fragilaria crotonensis	3140	14,838	211,586	767	162,36	59,25
Nitzschia acicularis						
Stephanodiscus neoastraea	3	100,000	0,030	25120	0,75	0,27
Ulnaria sp.						
Ulnaria delicatissima var. angustissima	4	100,000	0,040	2973	0,12	0,04
Gesamt			781,48		274,04	100,00
			10 ³ L ⁻¹		0,274	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: TRA2023-03_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im August bei 4,2 % - und damit unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

Prüfbericht Phytoplankton - GZÜV-Untersuchungen des Jahres 2023 Traunsee 2023-11-20

1. Angaben zu Prüflabor und Auftraggeber

Prüflabor	Dr. Jersabek	Prüfbericht-Nr.	TRA2023-04
Auftraggeber	Amt der Oberösterreichischen La	andesregierung	

2. Angaben zum See, zur Untersuchungsstelle und Probenahme

Allgemeine Angal	oen									
Gewässername		Trau	ınsee		Rechtswert		48	4.528		
Messstellenname					Hochwert		30	4.807		
(GZÜV-)Messstellen_ID					Median		31			
Detail WK Name					Trophischer C	Grundzustand	oli	oligotroph		
Detail WK ID					Höhe Messpu	nkt [m]	42	3		
	••	. • • • •		4 T		4		_		
	u jew	elis r	nindestens 4	4 lerr	ninen pro Un	tersuchung	sjan	r: 		
Datum, Uhrzeit, Pro	benah	me-	Team, Prüfla	rüflabor						
Datum Probenahme	2023-1	1-20		Probe	enahme-Team					
Uhrzeit Probenahme				Prüfla	abor *	Bundesamt für Mondsee, Scha		erwirtschaft IGF		
Limnologisch charakteri			punkt **	Begini	n der Herbstzirkula	ntion				
* wenn Proben nicht vom selben P ** Frühjahrszirkulation, Beginn der			n, Höhepunkt der Som	nmerstagn	nation, Beginn der Herb	stzirkulation				
Witterung										
vor der Prober				me		während de	r Prol	Probenahme		
Wetter										
Wind										
Niederschlag		Da	atum:							
Lufttemperatur [°C]										
Wolkenbedeckung [%]										
Hydrographie, Trüb	ung, F	ärbu	ung, Schicht	ung						
Hochwassereinfluss (de	r wichti	gsten	Zubringer)							
vor der Probenahme			ja □	nein	während der F	Probenahme		□ ja	□ nein	
Wasserstand aktuell (zu Schätzung auf m ü.A.)*	mindest	t			Sonstiges (Ok Pollenflug)	erflächenfilm,				
Trübung, Art der Trübung **					Thermokline [m]				
Färbung					Sichttiefe/Sec	chi-Tiefe [m]		4,	2	
Algenblüten, Auftriebsfl	ocken		ja □	nein	Grenze der eu [m] (Kompens	photischen Zo sationsebene)	ne			
* z.B. hoch, mittel, niedrig	* * mi	ineralisc	ch, organisch, Calcitfäi	rbung				•		
Probenahme										
Probenahmetiefe der quantitativen			0 – 21 m		Art der Probenahme der			x Mischprobe		
Probe [m; vonbis]			0 21111		quantitativen Pi			☐ integrierende Probe		
Macabanusita film dia	alitati.				wenn Mischpro	be: Angabe dei	Tiefe	enstufen		
Maschenweite für die qu Phytoplankton-Probe fu		•								

3. Methodische Angaben zur qualitativen, quantitativen und Diatomeen - Analyse

Qualitative Anal	Qualitative Analyse												
Probennummer		TRA2023	-04	Beark	beiterIn	Christian Jers	abek						
Datum der Analyse		2024-01-	11	Probe	enart	☐ lebend		x fixiert					
Quantitative Ana	alyse												
Probennummer		TRA2	2023-04		Nachfixieru Probe	ıng der quantitati	□ ja		x nein				
BearbeiterIn		Chris	stian Jersabek	v	wenn ja, w	ann							
Datum der Analyse			I-01-11	К	Cammerty)		Utermöh	ıl				
Zeitraum zw. Probenał Analyse	hme und 57 Tage				Cammervo			10 ml					
			Ausgegossenes Volu Probe					100 ml					
Quantitative Probe:	Quantitative Probe: Zählstrategie Anzahl Diagonalen / Felder												
Proben-Nr.	Kam	nmertyp	Zählstrategie Diagonalen/Felder		bj. 5x	Obj. 40x							
TRA2023-04	Uterr	möhl	Ganze Kammer	U	1	Obj. 10x	bj. 25x	Obj. 40x					
11012023 01	Oten		Diagonale/Felder	3 D 32 F 18 F									
							l			<u>I</u>			
Diatomeenprobe	2												
Herkunft													
wenn eigene Diatomee	nprobe	?											
Probennummer		TRA2023	-04_Diat	١	Volumen								
Präparation		x Glühpi	räparat 🗆	chemis	che Oxida	tion							
Optische Ausrüs	tung	des Zäh	lmikroskops und D	urchl	ichtmik	roskops für d	die D	iatome	en-Analys	e			
Zählmikroskop (Marke/Typ)		Zeiss Te	laval 3, Jena										
Durchlichtmikroskop (Marke/Typ, Phasenkontrast ja/nein, DIC ja/nein)						aplan (ja/ja)							
Stärkstes Objektiv (Vergrößerung, num								100x (oil, 1,25)					

4. Quantitative Analyse (Utermöhl-Zählung)

Laborinterne Probennummer: TRA2023-04

TRA2023-11-20	Gezählte Individuen	Gezähltes Vol. [ml]	Abundanz [10³ L ⁻¹]	Zellvolu- men [µm³]	FW [µg l ⁻¹]	Rel. Anteil [%]
Cyanobacteria						
Chroococcus limneticus						
Chlorophyceae						
Willea irregularis						
Conjugatophyceae						
Cosmarium depressum	1	14,838	0,067	3328	0,22	0,12
Chrysophyceae						
Dinobryon sertularia						
Dinophyceae						
Ceratium hirundinella	1	100,000	0,010	52257	0,52	0,28
Gymnodinium helveticum	3	14,838	0,202	11189	2,26	1,22
Gymnodinium sp.						
Cryptophyceae						
Cryptomonas erosa	66	14,838	4,448	1911	8,50	4,60
Cryptomonas marssonii	2	2,189	0,914	301	0,27	0,15
Plagioselmis nannoplanctica	86	0,476	180,506	85	15,37	8,32
Rhodomonas lens	12	0,476	25,187	442	11,14	6,03
Bacillariophyceae						
Asterionella formosa	256	100,000	2,560	720	1,84	1,00
Cyclotella bodanica	3	100,000	0,030	23560	0,71	0,38
Cyclotella gr.sp.	13	14,838	0,876	3577	3,13	1,70
Cyclotella sp.	4	0,847	4,723	1060	5,00	2,71
Diatoma ehrenbergii						
Fragilaria crotonensis	3100	14,838	208,921	640	133,71	72,36
Ulnaria sp.	3	14,838	0,202	10304	2,08	1,13
Gesamt			428,65		184,78	100,00
			10 ³ L ⁻¹		0,185	%
					mm³ L ⁻¹	

5. Diatomeenanalyse

Laborinterne Probennummer: TRA2023-04_Diato

Der Anteil centrischer Diatomeen am Gesamtbiovolumen lag im November bei 4,8 % - und damit unter den It. Leitfaden zur Erhebung der biologischen Qualitätselemente (Teil B2, Phytoplankton) für eine nähere Analyse erforderlichen 10 %. Auf eine taxonomische Absicherung auf Artniveau durch Detailanalyse am Glühpräparat wurde daher verzichtet!

9. Quellenangabe

- Brettum, P (1989) Alger som indikator på vannkvalitet i norske innsjøer. Plantplankton. NIVA, Trondheim, 112 pp.
- CEN TC 230/WG 2/TG 3 (2007) Phytoplankton biovolume determination using inverted microscopy (Utermöhl technique). Draft proposal 2006.
- Deisinger, G (1984) Leitfaden zur Bestimmung der planktischen Algen der Kärntner Seen und ihrer Biomasse. Kärntner Institut für Seenforschung (ed.), Klagenfurt, 64 pp.
- Houk, V., Klee, R. and Tanaka, H. (2010) Atlas of freshwater centric diatoms with a brief key and descriptions, Part III. Stephanodiscaceae A. *Cyclotella, Tertiarius, Discostella.* In: Poulícková, A. (ed.): Fottea 10 (Supplement): 498 pp.
- Houk, V., Klee, R. and Tanaka, H. (2014) Atlas of freshwater centric diatoms with a brief key and descriptions Part IV. Stephanodiscaceae B: Stephanodiscus, Cyclostephanos, Pliocaenicus, Hemistephanos, Stephanocostis, Mesodictyon & Spicaticribra. In: Poulícková, A. (ed.): Fottea 14 (Supplement): 529 pp.
- Houk, V., Klee, R. and Tanaka, H. (2017) Atlas of freshwater centric diatoms: with a brief key and descriptions, Parts I II. Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. Second emended edition. In: Poulícková, A. (ed.): Fottea 17 (Supplement): 615 pp.
- Krammer, K. und Lange-Bertalot, H. (1991) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. *In* Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Eds.). *Süsswasserflora von Mitteleuropa* 2(3): 1-576. Gustav Fischer Verlag, Stuttgart.
- Sampl, H, Schulz, L, Gusinde, R-E & Tomek, H (1989) Seenreinhaltung in Österreich. Fortschreibung 1981–1987. Informationsschrift des BM für Land- und Forstwirtschaft (ed.), 175 pp.
- Utermöhl, H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9, 1–38.

- Wolfram, G & Dokulil, MT (2010) Leitfaden zur Erhebung der Biologischen Qualitätselemente, Seen. Teil B2 Phytoplankton. Handbuch des BMLFUW & des BAW, Wien, 48 pp.
- Wolfram, G., K. Donabaum & M. T. Dokulil (2013) Leitfaden zur Erhebung der biologischen Qualitätselemente. Teil B2 Phytoplankton. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 73 pp.

10. ANHANG

10.1. GZÜV - Ergebnisberichte, 2007 – 2022 (in chronologischer Reihenfolge):

- Wolfram G., Donabaum, K. und Niedermayr, R. 2008: Bewertung des ökologischen Zustandes von 5 Seen in Oberösterreich anhand des Biologischen Qualitätselements Phytoplankton im Rahmen der GZÜV (2007). DWS Hydro-Ökologie, Wien, 95 S.
- Wolfram G., Niedermayr, R. und Donabaum, K. 2009: Bewertung des ökologischen Zustandes von 5 Seen in Oberösterreich anhand des Biologischen Qualitätselements Phytoplankton im Rahmen der GZÜV (2008). DWS Hydro-Ökologie, Wien, 99 S.
- Wolfram G., Niedermayr, R. und Donabaum, K. 2010: Bewertung des ökologischen Zustandes von 5 Seen in Oberösterreich anhand des Biologischen Qualitätselements Phytoplankton im Rahmen der GZÜV (2009). DWS Hydro-Ökologie, Wien, 120 S.
- Mildner J., Friedl, M. und Reichmann, M. 2011: Ergebnisbericht Qualitätselement Phytoplankton GZÜV 2010 Oberösterreich. KIS Kärntner Institut für Seenforschung GmbH, Klagenfurt, 125 S.
- Mildner J., Friedl, M. und Reichmann, M. 2012: Ergebnisbericht Qualitätselement Phytoplankton GZÜV 2011 Oberösterreich. KIS Kärntner Institut für Seenforschung GmbH, Klagenfurt, 120 S.
- Mildner J., Friedl, M., Reichmann, M. und Joham, B. 2013: Ergebnisbericht Qualitätselement Phytoplankton GZÜV 2012 Oberösterreich. KIS Kärntner Institut für Seenforschung GmbH, Klagenfurt, 119 S.
- Schafferer E. und Pfister P. 2014: Ergebnisbericht Qualitätselement Phytoplankton Oberösterreich 2013 GZÜV-Untersuchungen (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee) Bewertung des ökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie, ARGE Limnologie GesmbH, LA 1456, Innsbruck, 192 S.

- Schafferer E. und Pfister P. 2015: Ergebnisbericht Qualitätselement Phytoplankton Oberösterreich 2014 GZÜV-Untersuchungen (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee) Bewertung des ökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie, ARGE Limnologie GesmbH, LA 1456, Innsbruck, 196 S.
- Schafferer E. und Pfister P. 2016: Ergebnisbericht Qualitätselement Phytoplankton Oberösterreich 2015 GZÜV-Untersuchungen (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee) Bewertung des ökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie, ARGE Limnologie GesmbH, LA 1456, Innsbruck, 199 S.
- Jersabek C. D. 2018: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2016, mit Dreijahresmitteln seit 2014. Arnsdorf, 199 S.
- Jersabek C. D. 2018: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2017, mit Dreijahresmitteln seit 2015. Arnsdorf, 192 S.
- Jersabek C. D. 2019: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2018, mit Dreijahresmitteln seit 2016. Arnsdorf, 201 S.
- Jersabek C. D. 2020: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2019, mit Dreijahresmitteln seit 2017. Arnsdorf, 205 S.
- Jersabek C. D. 2021: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2020, mit Dreijahresmitteln seit 2018. Arnsdorf, 198 S.
- Jersabek C. D. 2022: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2021, mit Dreijahresmitteln seit 2019. Arnsdorf, 195 S.
- Jersabek C. D. 2023: Ökologischer Zustand der Seen im Land Oberösterreich (Attersee, Hallstätter See, Irrsee, Mondsee, Traunsee). Bewertungen anhand des biologischen Qualitätselementes Phytoplankton, gemäß EU-Wasserrahmenrichtlinie (GZÜV 2009). Das Jahr 2022, mit Dreijahresmitteln seit 2020. Arnsdorf, 187 S.

10.2. Saisonales Auftreten der Phytoplankton-Arten in OÖ Seen

Tab.: Phytoplankton-Taxa mit relativen Anteilen von > 3 % am jeweiligen Gesamt-Biovolumen; Taxa in alphabetischer Reihenfolge, mit individuellem Biovolumen und relativem Anteil in einzelnen Gewässern zu verschiedenen Jahreszeiten. BV: Biovolumen; Saisonen: FJ Frühjahr, SO Sommer, HE Herbst, SH Spätherbst, WI Winter; Trophie-Scores: Trophieklassen entsprechend Tabs. 4.2.3. – 8.2.3. Algenklassen: Bico Bicosoecidea, Chloro Chlorophyceae, Chryso Chrysophyceae, Crypto Cryptophyceae, Cyano Cyanobacteria, Desmid Conjugatophyceae-Desmidiales, Diato Diatomeae (Bacillariophyceae), Dino Dinophyceae, Euglen Euglenophyceae, Hapto Haptophyceae, Indet Indeterminata (unbestimmte Arten), Xantho Xanthophyceae, Zygne Conjugatophyceae-Zygnematales

Taxon	Reb ID	BV (mm³)							Rel. Anteil	Gewässer	Saison	Algen- klasse
Aphanocapsa sp.	R1423	0,0376							6,4%	Mondsee	HE	Cyano
Asterionella formosa	R0135	0,0019							4,7%	Attersee	FJ	Diato
Asterionella formosa	R0135	0,0110							15,7%	Attersee	HE	Diato
Asterionella formosa	R0135	0,0023							6,0%	Hallstätter See	FJ	Diato
Asterionella formosa	R0135	0,0415							5,7%	Irrsee	FJ	Diato
Asterionella formosa	R0135	0,0217							3,0%	Mondsee	WI	Diato
Asterionella formosa	R0135	0,0451							5,4%	Mondsee	FJ	Diato
Asterionella formosa	R0135	0,1649							21,6%	Mondsee	FJ	Diato
Asterionella formosa	R0135	0,0018							3,2%	Traunsee	FJ	Diato
Asterionella formosa	R0135	0,0189							15,1%	Traunsee	FS	Diato
Asterionella formosa	R0135	0,0126							4,7%	Traunsee	SO	Diato
Aulacoseira subarctica	R0033	0,0593	0	1	8	1	0	0	35,8%	Mondsee	WI	Diato
Aulacoseira subarctica	R0033	0,1738	0	1	8	1	0	0	24,0%	Mondsee	WI	Diato
Aulacoseira subarctica	R0033	0,2886	0	1	8	1	0	0	34,2%	Mondsee	FJ	Diato
Aulacoseira subarctica	R0033	0,0742	0	1	8	1	0	0	9,7%	Mondsee	FJ	Diato
Ceratium cornutum	R1670	0,0046							3,1%	Attersee	FS	Dino
Ceratium hirundinella	R1672	0,0033							8,5%	Attersee	FJ	Dino
Ceratium hirundinella	R1672	0,0345							23,0%	Attersee	FS	Dino
Ceratium hirundinella	R1672	0,0293							18,9%	Attersee	SO	Dino
Ceratium hirundinella	R1672	0,0256							36,3%	Attersee	HE	Dino
Ceratium hirundinella	R1672	0,0022							5,7%	Hallstätter See	FJ	Dino
Ceratium hirundinella	R1672	0,0211							18,3%	Hallstätter See	SO	Dino
Ceratium hirundinella	R1672	0,0190							29,5%	Hallstätter See	HE	Dino
Ceratium hirundinella	R1672	0,0391							12,3%	Irrsee	FS	Dino
Ceratium hirundinella	R1672	0,0560							26,9%	Irrsee	SO	Dino
Ceratium hirundinella	R1672	0,0729							15,2%	Irrsee	HE	Dino
Ceratium hirundinella	R1672	0,0543							9,2%	Mondsee	SO	Dino
Ceratium hirundinella	R1672	0,1064							20,8%	Mondsee	SO	Dino
Ceratium hirundinella	R1672	0,0513							8,7%	Mondsee	HE	Dino
Ceratium hirundinella	R1672	0,0942							9,3%	Mondsee	HE	Dino
Ceratium hirundinella	R1672	0,0176							8,1%	Mondsee	HE	Dino
Ceratium hirundinella	R1672	0,0070							4,4%	Mondsee	WI	Dino
Ceratium hirundinella	R1672	0,0168							6,2%	Traunsee	SO	Dino
Chroococcus limneticus	R1438	0,0755	4	2	2	1	1	0	15,7%	Irrsee	HE	Cyano
Chrysidiastrum catenatum	R1163	0,0112							7,2%	Attersee	SO	Chryso
Cryptomonas erosa	R1378	0,0117							7,6%	Attersee	SO	Crypto
Cryptomonas erosa	R1378	0,0043							6,2%	Attersee	HE	Crypto

Cryptomonas erosa	R1378	0,0020		Ì	Ì	ĺ	ĺ	Ì	5,0%	Hallstätter See	FJ	Crypto
Cryptomonas erosa	R1378	0,0225							19,6%	Hallstätter See	SO	Crypto
Cryptomonas erosa	R1378	0,0204							31,7%	Hallstätter See	HE	Crypto
Cryptomonas erosa	R1378	0,0122							5,8%	Irrsee	SO	Crypto
Cryptomonas erosa	R1378	0,0180							3,5%	Mondsee	SO	Crypto
Cryptomonas erosa	R1378	0,0369							6,3%	Mondsee	HE	Crypto
Cryptomonas erosa	R1378	0,0889							8,8%	Mondsee	HE	Crypto
Cryptomonas erosa	R1378	0,0111							5,1%	Mondsee	HE	Crypto
Cryptomonas erosa	R1378	0,0166							10,5%	Mondsee	WI	Crypto
Cryptomonas erosa	R1378	0,0038							3,0%	Traunsee	FS	Crypto
Cryptomonas erosa	R1378	0,0085							4,7%	Traunsee	HE	Crypto
Cryptomonas marssonii	R1382	0,0136							4,3%	Irrsee	FS	Crypto
Cryptomonas marssonii	R1382	0,0119							5,7%	Irrsee	so	Crypto
Cryptomonas marssonii	R1382	0,0159							3,1%	Mondsee	so	Crypto
Cyclotella bodanica	R0040	0,0023	7	3	0	0	0	0	5,8%	Attersee	FJ	Diato
Cyclotella bodanica	R0040	0,0025	7	3	0	0	0	0	10,4%	Attersee	FS	Diato
Cyclotella cf. atomus	R0039	0,0014		J	U	U	0	0	3,6%	Attersee	FJ	Diato
Cyclotella cf. atomus	R0039	0,0035							6,3%	Traunsee	FJ	Diato
Cyclotella cf. comensis	R0039	0,0065	7	2	1	0	0	0	4,4%	Attersee	FS	Diato
			/	2	1	U	U	U		Traunsee	FS	
Cyclotella cf. planctonica	R2570	0,0041	7	2	0	_	_	_	3,3% 4,8%		FJ	Diato
Cyclotella cyclopuncta	R2195	0,0019	7	3	_	0	0	0		Attersee		Diato
Cyclotella cyclopuncta	R2195	0,0489	7	3	0	0	0	0	32,6%	Attersee	FS	Diato
Cyclotella cyclopuncta	R2195	0,0253	7	3	0	0	0	0	22,5%	Attersee	SO	Diato
Cyclotella cyclopuncta	R2195	0,0059	7	3	0	0	0	0	8,3%	Attersee	HE	Diato
Cyclotella cyclopuncta	R2195	0,3227	7	3	0	0	0	0	44,4%	Irrsee	FJ	Diato
Cyclotella cyclopuncta	R2195	0,1016	7	3	0	0	0	0	31,9%	Irrsee	FS	Diato
Cyclotella cyclopuncta	R2195	0,0043	7	3	0	0	0	0	4,1%	Mondsee	WI	Diato
Cyclotella cyclopuncta	R2195	0,1259	7	3	0	0	0	0	13,7%	Mondsee	FJ	Diato
Cyclotella cyclopuncta	R2195	0,2320	7	3	0	0	0	0	34,7%	Mondsee	SO	Diato
Cyclotella cyclopuncta	R2195	0,0177	7	3	0	0	0	0	8,1%	Mondsee	HE	Diato
Cyclotella cyclopuncta	R2195	0,0078	7	3	0	0	0	0	4,9%	Mondsee	WI	Diato
Cyclotella cyclopuncta	R2195	0,0050	7	3	0	0	0	0	8,8%	Traunsee	FJ	Diato
Cyclotella cyclopuncta	R2195	0,0157	7	3	0	0	0	0	21,2%	Traunsee	FS	Diato
Cyclotella intermedia	R0040	0,0177	7	3	0	0	0	0	15,4%	Hallstätter See	SO	Diato
Cyclotella kuetzingiana	R0046	0,0441							10,0%	Irrsee	FJ	Diato
Cyclotella ocellata	R0048	0,0420	0	1	1	4	3	1	13,2%	Irrsee	FS	Diato
Cyclotella radiosa	R0051	0,0016	0	0	1	3	5	1	4,0%	Attersee	FJ	Diato
Cyclotella radiosa	R0051	0,0265		0		3		1	3,6%	Irrsee	FJ	Diato
Cyclotella radiosa	R0051	0,0135	0	0	1	3	5	1	4,2%	Irrsee	FS	Diato
Cyclotella sp.	R0053	0,0055							14,0%	Attersee	FJ	Diato
Cyclotella sp.	R0053	0,0029							4,8%	Hallstätter See	FS	Diato
Cyclotella sp.	R0053	0,0030							4,7%	Hallstätter See	HE	Diato
Cyclotella sp.	R0053	0,0101							8,3%	Irrsee	SO	Diato
Cyclotella sp.	R0053	0,0262							3,4%	Mondsee	FJ	Diato
Cyclotella sp.	R0053	0,0216							3,9%	Mondsee	SO	Diato
Cyclotella sp.	R0053	0,0352							7,3%	Mondsee	SO	Diato
Cyclotella sp.	R0053	0,0170	L	L		L		L	3,0%	Mondsee	HE	Diato
Cyclotella sp.	R0053	0,0847							8,5%	Mondsee	HE	Diato
Cyclotella sp.	R0053	0,0050							4,5%	Traunsee	HE	Diato
Diatoma ehrenbergii	R0184	0,0057	0	0	0	3	7	0	14,4%	Hallstätter See	FJ	Diato
Dinobryon divergens	R1073	0,0120							7,7%	Attersee	SO	Chryso
Dinobryon divergens	R1073	0,0576							54,2%	Hallstätter See	FS	Chryso
Dinobryon divergens	R1073	0,0221							6,9%	Irrsee	FS	Chryso
Dinobryon divergens	R1073	0,0166							3,5%	Irrsee	HE	Chryso
Dinobryon divergens	R1073	0,0293							4,4%	Mondsee	SO	Chryso
	11.070	0,0200	I	<u> </u>	ı		<u> </u>	ı	1,170		, 55	J.1.1 y U U

Dinobryon divergens	R1073	0,1165							19,7%	Mondsee	so	Chryso
Dinobryon divergens	R1073	0,0286							10,6%	Traunsee	SO	Chryso
Dinobryon sociale	R1083	0,0069							4,4%	Attersee	SO	Chryso
Dinobryon sociale	R1083	0,0084							4,0%	Irrsee	SO	Chryso
Dinophyceae indet.	R1708	0,0069							4,5%	Attersee	SO	Dino
Dinophyceae indet.	R1708	0,0551							9,3%	Mondsee	HE	Dino
Fragilaria crotonensis	R0223	0,0037							9,4%	Attersee	FJ	Diato
Fragilaria crotonensis	R0223	0,0041							3,6%	Hallstätter See	SO	Diato
Fragilaria crotonensis	R0223	0,0691							9,5%	Irrsee	FJ	Diato
Fragilaria crotonensis	R0223	0,0200							6,3%	Irrsee	FS	Diato
Fragilaria crotonensis	R0223	0,0135							8,1%	Mondsee	WI	Diato
Fragilaria crotonensis	R0223	0,0944							12,4%	Mondsee	FJ	Diato
Fragilaria crotonensis	R0223	0,3019							32,8%	Mondsee	FJ	Diato
Fragilaria crotonensis	R0223	0,1605							15,9%	Mondsee	HE	Diato
Fragilaria crotonensis	R0223	0,0055							3,5%	Mondsee	WI	Diato
Fragilaria crotonensis	R0223	0,1624							60,1%	Traunsee	SO	Diato
Fragilaria crotonensis	R0223	0,1337							73,3%	Traunsee	HE	Diato
Gloeobotrys limneticus	R1840	0,0213							10,2%	Irrsee	SO	Xantho
Gloeobotrys limneticus	R1840	0,0165							3,4%	Irrsee	HE	Xantho
Gymnodinium sp.	R1654	0,0015	1	5	2	1	1	0	3,8%	Hallstätter See	FJ	Dino
Gymnodinium uberrimum	R1660	0,0099	1		2	1	0	0	6,4%	Attersee	SO	Dino
Gymnodinium uberrimum	R1660	0,2421	1		2	1	0	0	50,5%	Irrsee	HE	Dino
Mallomonas caudata	R1100	0,0308	0	0	1	4	5	0	4,2%	Irrsee	FJ	Chryso
Peridinium sp.	R1699	0,0111							3,5%	Irrsee	FS	Dino
Peridinium sp.	R1699	0,0227							3,8%	Mondsee	HE	Dino
Peridinium willei	R1704	0,0051	1	4	2	1	1	1	3,3%	Attersee	SO	Dino
Peridinium willei	R1704	0,0071	1	4	2	1	1	1	4,5%	Mondsee	WI	Dino
Picoplankton indet.	R2617	0,0038							5,4%	Attersee	HE	Indet
Picoplankton indet.	R2617	0,0043							4,1%	Hallstätter See	FS	Indet
Plagioselmis nannoplanctica	R2162	0,0046							11,6%	Attersee	FJ	Crypto
Plagioselmis nannoplanctica	R2162	0,0149							9,9%	Attersee	FS	Crypto
Plagioselmis nannoplanctica	R2162	0,0068							4,4%	Attersee	SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0024							3,4%	Attersee	HE	Crypto
Plagioselmis nannoplanctica	R2162	0,0119							30,3%	Hallstätter See	FJ	Crypto
Plagioselmis nannoplanctica	R2162	0,0188							17,6%	Hallstätter See	FS	Crypto
Plagioselmis nannoplanctica	R2162	0,0316							27,4%		SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0148								Hallstätter See	HE	Crypto
Plagioselmis nannoplanctica	R2162	0,0117							3,7%	Irrsee	FS	Crypto
Plagioselmis nannoplanctica	R2162	0,0279							13,4%	Irrsee	SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0261							3,9%	Mondsee	SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0293							5,7%	Mondsee	SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0303							5,1%	Mondsee	HE	Crypto
Plagioselmis nannoplanctica	R2162	0,0363							3,6%	Mondsee	HE	Crypto
Plagioselmis nannoplanctica	R2162	0,0188							8,6%	Mondsee	HE	Crypto
Plagioselmis nannoplanctica	R2162	0,0085							5,4%	Mondsee	WI	Crypto
Plagioselmis nannoplanctica	R2162	0,0219							39,0%	Traunsee	FJ	Crypto
Plagioselmis nannoplanctica	R2162	0,0258							20,6%	Traunsee	FS	Crypto
Plagioselmis nannoplanctica	R2162	0,0087							3,2%	Traunsee	SO	Crypto
Plagioselmis nannoplanctica	R2162	0,0154				L			8,4%	Traunsee	HE	Crypto
Planktothrix rubescens	R1617	0,0013	1		3	4	1	0	3,4%	Attersee	FJ	Cyano
Planktothrix rubescens	R1617	0,0015	1		3	4	1	0	3,9%	Hallstätter See	FJ	Cyano
Planktothrix rubescens	R1617	0,0107	1	1	3	4	1	0	3,4%	Irrsee	FS	Cyano
Planktothrix rubescens	R1617	0,0098	1	1	3	4	1	0	4,7%	Irrsee	SO	Cyano
Planktothrix rubescens	R1617	0,0059	1	1	3	4	1	0	3,6%	Mondsee	WI	Cyano
Planktothrix rubescens	R1617	0,2673	1	1	3	4	1	0	36,8%	Mondsee	WI	Cyano

Planktothrix rubescens	R1617	0,2031	1	1	3	4	1	0	24,1%	Mondsee	FJ	Cyano
Planktothrix rubescens	R1617	0,1657	1	1	3	4	1	0	21,7%	Mondsee	FJ	Cyano
Planktothrix rubescens	R1617	0,2398	1	1	3	4	1	0	26,1%	Mondsee	FJ	Cyano
Planktothrix rubescens	R1617	0,3305	1	1	3	4	1	0	49,5%	Mondsee	SO	Cyano
Planktothrix rubescens	R1617	0,3307	1	1	3	4	1	0	56,0%	Mondsee	SO	Cyano
Planktothrix rubescens	R1617	0,2518	1	1	3	4	1	0	49,1%	Mondsee	SO	Cyano
Planktothrix rubescens	R1617	0,2512	1	1	3	4	1	0	24,8%	Mondsee	HE	Cyano
Planktothrix rubescens	R1617	0,0697	1	1	3	4	1	0	32,1%	Mondsee	HE	Cyano
Planktothrix rubescens	R1617	0,0617	1	1	3	4	1	0	39,2%	Mondsee	WI	Cyano
Rhodomonas lens	R1407	0,0061							15,4%	Attersee	FJ	Crypto
Rhodomonas lens	R1407	0,0051							12,9%	Hallstätter See	FJ	Crypto
Rhodomonas lens	R1407	0,0134							12,6%	Hallstätter See	FS	Crypto
Rhodomonas lens	R1407	0,0042							3,6%	Hallstätter See	SO	Crypto
Rhodomonas lens	R1407	0,0187							11,3%	Mondsee	WI	Crypto
Rhodomonas lens	R1407	0,0282							3,9%	Mondsee	WI	Crypto
Rhodomonas lens	R1407	0,0368							4,4%	Mondsee	FJ	Crypto
Rhodomonas lens	R1407	0,0434							5,7%	Mondsee	FJ	Crypto
Rhodomonas lens	R1407	0,1007							10,9%	Mondsee	FJ	Crypto
Rhodomonas lens	R1407	0,0478							22,0%	Mondsee	HE	Crypto
Rhodomonas lens	R1407	0,0209							13,3%	Mondsee	WI	Crypto
Rhodomonas lens	R1407	0,0108							19,1%	Traunsee	FJ	Crypto
Rhodomonas lens	R1407	0,0050							4,0%	Traunsee	FS	Crypto
Rhodomonas lens	R1407	0,0085							3,2%	Traunsee	SO	Crypto
Rhodomonas lens	R1407	0,0111							6,1%	Traunsee	HE	Crypto
Snowella lacustris	R1510	0,0837	0	1	4	4	1	0	11,5%	Irrsee	FJ	Cyano
Stephanodiscus alpinus	R0076	0,0045							6,4%	Attersee	HE	Diato
Stephanodiscus alpinus	R0076	0,0062							4,9%	Traunsee	FS	Diato
Stephanodiscus neoastraea	R0083	0,0071	0	1	2	4	3	0	7,1%	Hallstätter See	SO	Diato
Stephanodiscus neoastraea	R0083	0,0281	0	1	2	4	3	0	19,3%	Mondsee	WI	Diato
Stephanodiscus neoastraea	R0083	0,1360	0	1	2	4	3	0	20,1%	Mondsee	WI	Diato
Stephanodiscus neoastraea	R0083	0,1559	0	1	2	4	3	0	20,4%	Mondsee	FJ	Diato
Stephanodiscus neoastraea	R0083	0,0835	0	1	2	4	3	0	10,9%	Mondsee	FJ	Diato
Stephanodiscus neoastraea	R0083	0,0046	0	1	2	4	3	0	4,7%	Mondsee	WI	Diato
Stephanodiscus neoastraea	R0083	0,0033	0	1	2	4	3	0	6,6%	Traunsee	FJ	Diato
Stephanodiscus neoastraea gr.	R0083	0,0026	0	1	2	4	3	0	9,7%	Hallstätter See	FJ	Diato
Ulnaria delicatissima	R2173	0,0043							3,5%	Traunsee	FS	Diato
Ulnaria delicatissima var. angustissima	R2174	0,0408	2	3	3	2	0	0	5,3%	Mondsee	FJ	Diato
Uroglena sp.	R1151	0,0114	0	3	3	3	1	0	5,5%	Irrsee	SO	Chryso