

Fachveranstaltung

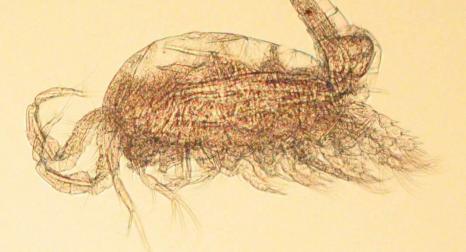
Das DVGW-Arbeitsblatt W 271:

Invertebraten in der Wasserversorgung; Vorkommen und Empfehlungen zum Umgang

PD Dr. Hans Jürgen Hahn

Vorträge

- 1.) Der Grundwasserzoo Lebende Tiere aus Grund- und Trinkwasser
- 2.) Grundlagen der Grund- und Trinkwasserbiologie
- 3.) Oberflächenwassereintrag: Bewertung von Brunnen und Quellen
- 4.) StygoTracing: Bewertung hydrologischer Wechselwirkungen oder "Woher kommt mein Wasser?"
- 5.) Netzhygiene: Invertebraten als Indikatoren bei der Erstellung von Spülplänen
- 6.) Das DVGW-Arbeitsblatt W 271


Gesamtdauer: 3 Std.

Der Grundwasserzoo - Lebende Tiere aus

Grund- und Trinkwasser

Grund- und Trinkwasserbiologie für die Praxis

Grundlagen der Grund- und Trinkwasserbiologie

SEPORDERT VOM

Grundwasser & Trinkwasser

- 1. TW-Versorgungsanlagen = künstliche GW-Lebensräume
- 2. Es gelten die gleichen ökologischen Spielregeln
- 3. Es finden sich die gleichen Tiere in GW und TW
- 4. Alle TW-Versorgungsanlagen sind besiedelt
- 5. Invertebraten sind Indikatoren für Zustand der Anlagen
- 6. Werkzeuge der Risikobewertung

Schlüsselfaktoren – Hydrologischer Austausch

Organ. C Temp. O Temp.

Stygoxene

Hohes Potential für Massenvorkommen

Stygobionte

Geringes Potential für Massenvorkommen

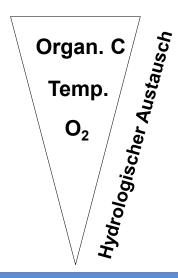
Fauna reflektiert hydrologischen Austausch

Zusammenfassung

- Hydrologischer Austausch entscheidend für Tiere im Rohwasser, Fauna reflektiert OW-Eintrag
- Standortfaktoren: Temperatur, O2, <u>Detritus/organ. Material</u>
- Geringer Oberflächeneinfluss: geringe Dichten, GW-Tiere
- (zeitweise) hoher Oberflächeneinfluss: hohe Dichten, v. a.
 GW-fremde Tiere
- Norddeutschland: geringe O2-Werte, geringer Lückenraum: wenige Tiere, wenige Krebse
- Mittelgebirge: höhere O2-Werte, größere Lückenräume: mehr Tiere, mehr Krebse

Oberflächenwassereintrag:

Bewertung von Brunnen und Quellen


Grund- und Trinkwasserbiologie für die Praxis

Schlüsselfaktoren TW-Versorgung

Oberflächenwasser

Grundwasser

Berkhoff 2010, verändert

Stygoxene

Hohes Potential für Massenvorkommen

Stygobionte

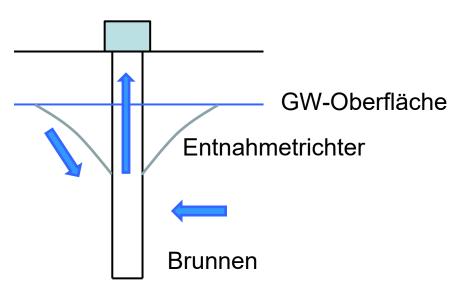
Geringes Potential für Massenvorkommen

Bioindikatoren

Lebewesen reagieren in ihrem Auftreten und ihrem Verhalten auf ihre Umwelt. Damit zeigen sie die Umweltbedingungen an.

Was wir nicht wollen!

Verkeimung und Eintrag unerwünschter Stoffe



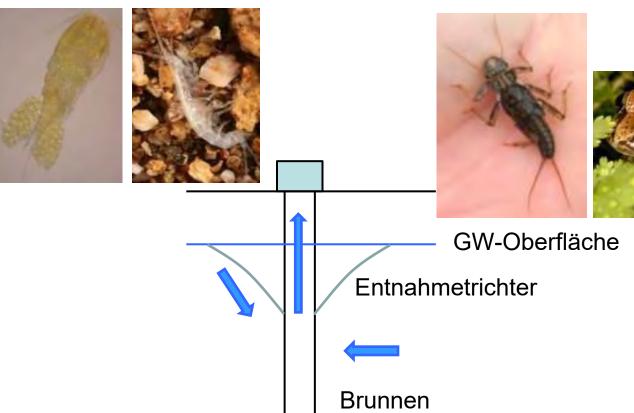
Brunnen

Risiko: Oberflächeneintrag

(Risiko)bewertung von Brunnen zur Trinkwasserversorgung

Zwei Fauna-Typen:

1.) Rohwasserfauna


Oberflächenwassereintrag

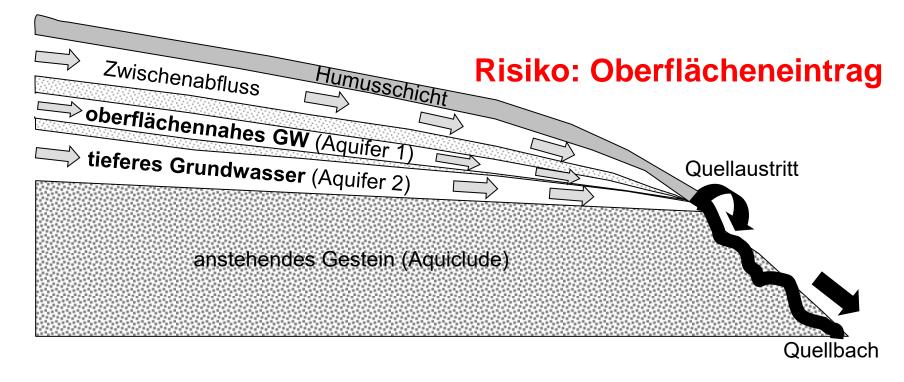
- Hydraul. Kurzschlüsse im EZG

2.) Oberflächenfauna

Oberflächen(wasser)eintrag

- Baulicher Zustand Fassung

Quellen



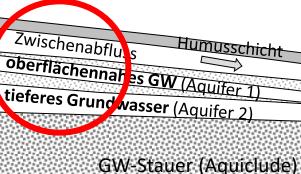
Risiko: Oberflächeneintrag

Quellschüttung – Herkunft des Wassers

verschiedene Komponenten: Tiefen-GW ausgeglichen,auch saisonabhängig (Spätwinter ⇔ -sommer)=> kritisch: Oberflächenanteil (Stoffeintrag, Verkeimung)

(Risiko)bewertung von Quellen zur Trinkwasserversorgung

Zwei Fauna-Typen:


1.) Rohwasserfauna

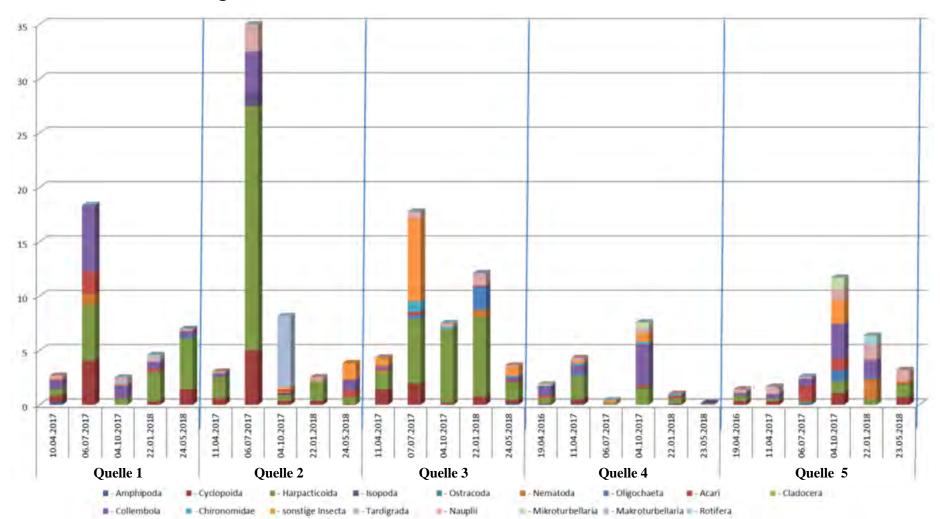
Oberflächenwassereintrag

- Hydraul. Kurzschlüsse im EZG

2.) eigentliche Quellfauna

Oberflächenwassereintrag

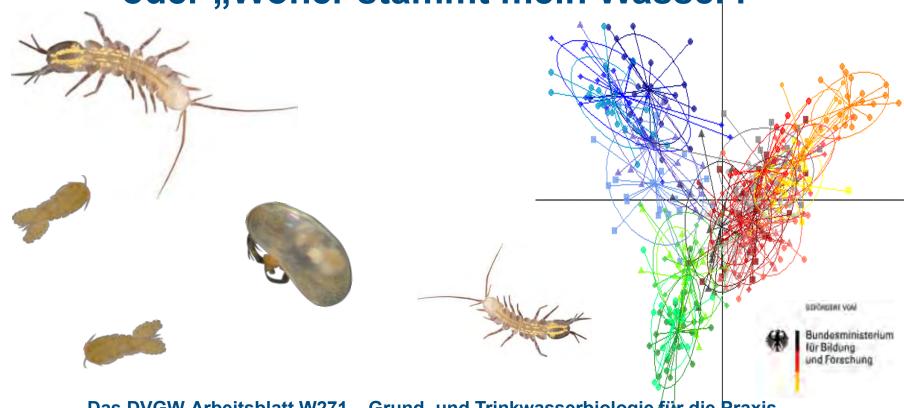
- Baulicher Zustand Fassung



(Risiko)bewertung von Quellen zur Trinkwasserversorgung

Ausgeprägte jahreszeitliche Dynamik: Jahresmonitoring erfasst kritische Situationen

Zusammenfassung Brunnen & Quellen


- 1. Brunnen: GW, Quellen: Wässer verschiedener Herkunft
- 2. Brunnen i. d. R. besser von OW abgeschirmt
- 3. Quellen ausgeprägte hydrolog. Dynamik
- 4. Quellen höheres Risiko OW-Eintrag (Verkeimung)
- 5. Rohwasserfauna zeigt Situation im EZG
- 6. Quell-/Oberflächenfauna zeigt Zustand der Fassung
- 7. Brunnen & Quellen sind individuell zu bewerten

StygoTracing:

Bewertung hydrologischer Wechselwirkungen oder "Woher stammt mein Wasser?"

Das DVGW-Arbeitsblatt W271 – Grund- und Trinkwasserbiologie für die Praxis

StygoTracing - Woher stammt mein Wasser?

Invertebraten als biologische Tracer Populationsgenetisches Verfahren zur Ermittlung

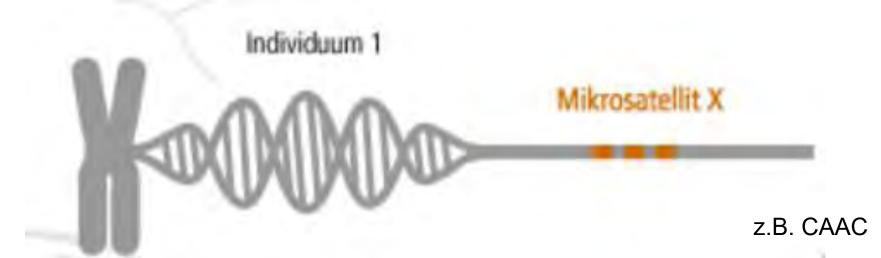
- der Wasserflüsse und des hydrologischen Austausches
- der Einzugsgebietsgrenzen (EZGs)
- von Oberflächenwasser-Grundwasser-Interaktionen
- Eintrags- und Verbreitungspfaden in Versorgungsanlagen

StygoTracing - Anwendungsmöglichkeiten

Risikobewertung & Invertebratenmanagement

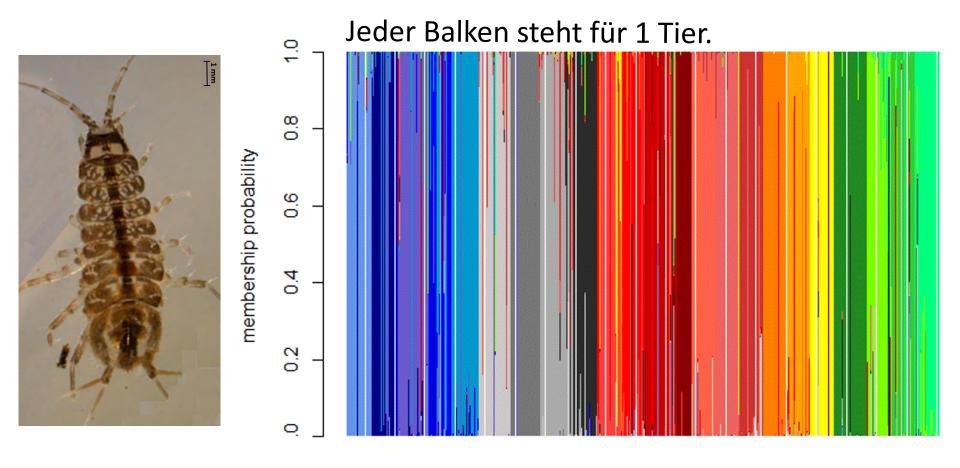
...mittels
Invertebraten als
passive biolog.
Tracer

StygoTracing - Das Prinzip: "Vaterschaftstest"



Methodik

Mikrosatelliten

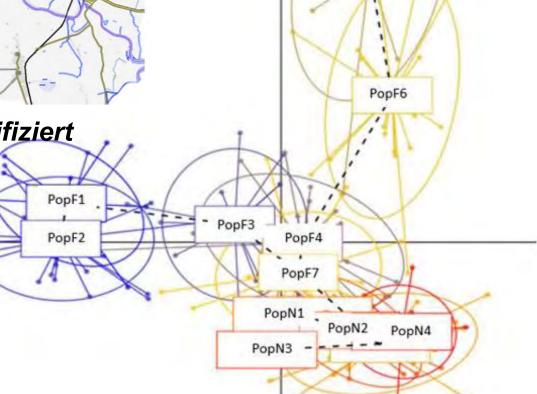

kurze, repetitive DNA-Sequenzen (4-10 bp, 5-100 fach)

Methodik

Die Tiere sind exzellente Indikatoren für hydrologische Wechselwirkungen

PopF5

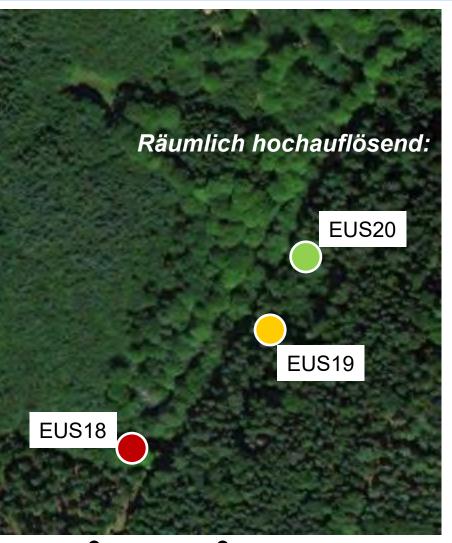
Beispiel 1: Norddeutsches Versorgungsnetz



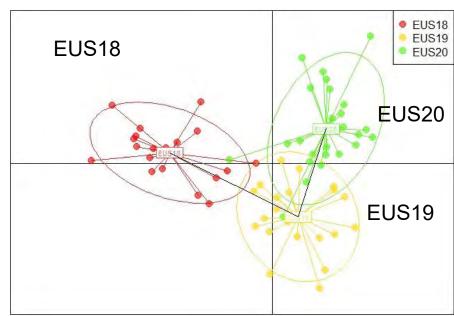
Eintragspfad der Asseln identifiziert

Eintrag bei Reparaturarbeiten

an der Hauptleitung



Beispiel 2: Buntsandsteinquellen, Pfälzer Wald


50 m

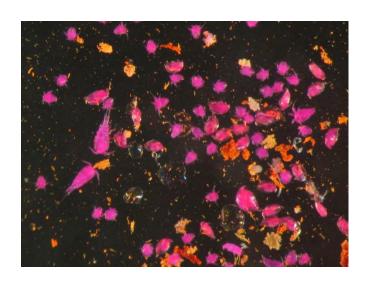
Stehen die Quellen miteinander in Verbindung?

Bryocamptus echinatus

Quellwässer lassen sich genetisch unterscheiden: EUS 19 und 20 stehen hydrologisch miteinander in Kontakt. EUS 18 ist weitgehend getrennt.

Zusammenfassung

- 1. StygoTracing ist ein passives, biologisches Tracerverfahren
- 2. Basiert auf genet. Ähnlichkeiten von Einzeltieren einer Art
- 3. Räumlich & zeitlich hochauflösend, skalierungsfrei
- 4. Anwendung überall dort, wo Tracerarten vorkommen
- 5. Keine Genehmigung erforderlich



Netzhygiene:

Invertebraten als Indikatoren bei der Erstellung von Spülplänen

Das DVGW-Arbeitsblatt W271 – Grund- und Trinkwasserbiologie für die Praxis

Schlüsselfaktoren TW-Versorgung

Organisches Material

Organ. Kohlenstoff reichert sich an (POM & zu **Biofilm** festgelegter DOC)

Temperatur

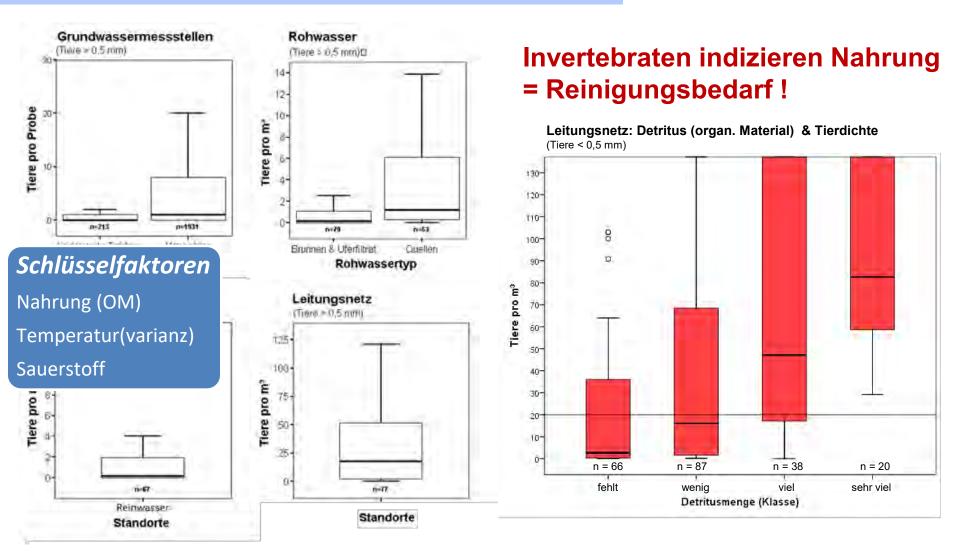
Temperatur steigt im System an (Sommer!)

Sauerstoff

Wasser wird belüftet

- Biofilme und Sedimente
- Stagnationszonen im Netz

Folge:


Optimierung der Lebensbedingungen v. a. für Oberflächenarten!

Leitungssysteme = lebende Systeme & Kohlenstoff-Senke

Organischer Kohlenstoff - Bewertung

EZG→ Wassergewinnung → Wasseraufbereitung → Wasserverteilung

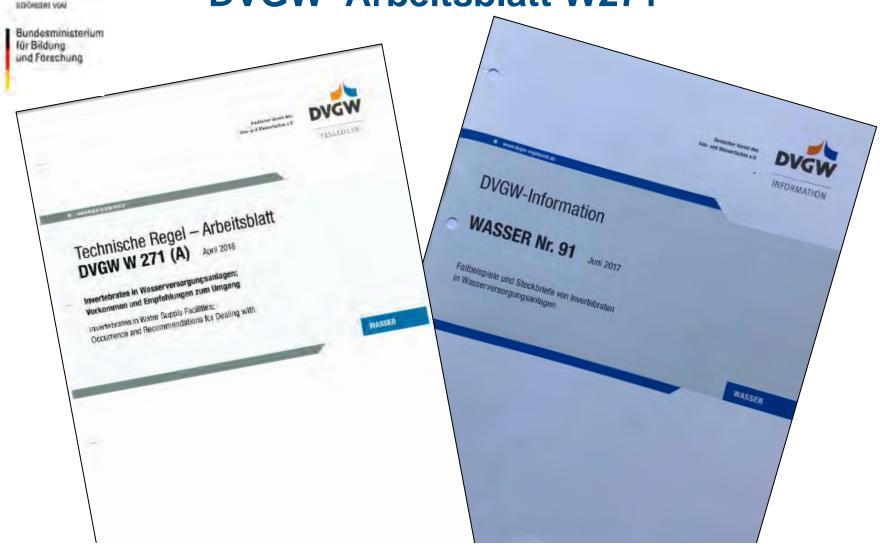
Reinigungsmethoden

<u>Spülmethoden</u>	
Methode	Zweck
Wasserspülung	Entfernen von Ablagerungen und Tieren
Saug-Druck-Spülung	Entfernen von Ablagerungen und Tieren
Impuls-Spülung	Entfernen von Ablagerungen und Tieren
Schirmspülung	Entfernen von Ablagerungen und Tieren
CO ₂ -Spülung	Entfernen ausschließlich von Tieren

Tabelle 4: Vergleich der drei Spülverfahren COMPREX®, ExtraQt® und CO₂-Spülverfahren anhand der Tagesspülleistung, Austrag an Tieren, Biofilmen und Sedimenten sowie der Nachhaltigkeit hinsichtlich Tieren und Sedimenten.

Spülverfahren	Spülstrecke / Tag	Austrag Tiere	Austrag Biofilm & Sedimente	Nachhaltigkeit (Tiere & Sedimente)
COMPREX®	1-2 km	~85 %	sehr effektiv	vermutlich hoch
ExtraQt®	5-8 km	~70 %	effektiv	vermutlich hoch
CO_2	3-4 km ¹⁾	90-95 % ²⁾	vermutlich gering	vermutlich gering
			(keine Angaben)	(keine Angaben)

¹⁾ Schätzung


Schlussfolgerungen

- 1. TW-Versorgungsanlagen = künstliche GW-Lebensräume
- 2. Aufbereitung & Verteilung verändert Charakter des Wassers Richtung Oberflächenwasser
- 3. Verfügbarer org. Kohlenstoff bestimmt Besiedlungsdichte
- 4. Erhöhte Temperaturen fördern Besiedlung
- 5. Invertebraten sind Indikatoren für Zustand der Anlagen

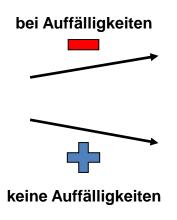
DVGW- Arbeitsblatt W271

Das DVGW-Arbeitsblatt W271 – Grund- und Trinkwasserbiologie für die Praxis

Arbeitsblatt W 271

Konzept: Von den Gewinnungsgebieten zu den Hausanschlüssen

Ziel: Management der Fauna


- Nutzung der Invertebraten als Indikatoren
- Maßnahmen
- Vermittlung TWA-ökologischer Kenntnisse: Hilfe zur Selbsthilfe
- Entwicklung von Untersuchungsstrategien
- Faunistische Bewertung der TWA
- Qualitätssicherung



Arbeitsblatt W 271 - Probennahmekonzept

Orientierende Untersuchung

Spezielle (vertiefende) Untersuchung

Routineuntersuchung

verändert nach DVGW

<u>Untersuchungshäufigkeit</u>:

- Jährlich (OF-WW: monatl.)
- Saison. Schwankungen: quartalsweise über 1 Jahr

Biologische Bewertungsverfahren

Indikation:

- **OW-Eintrag**
- Baul. Zustand d. Gewinn.-Anl.
- Organ. Material

Genetik/StygoTracing

Indikation:

- Herkunft des Wassers
- Eintragspfade &

Anwendung Biologischer Verfahren/W 271 & TrinkwV

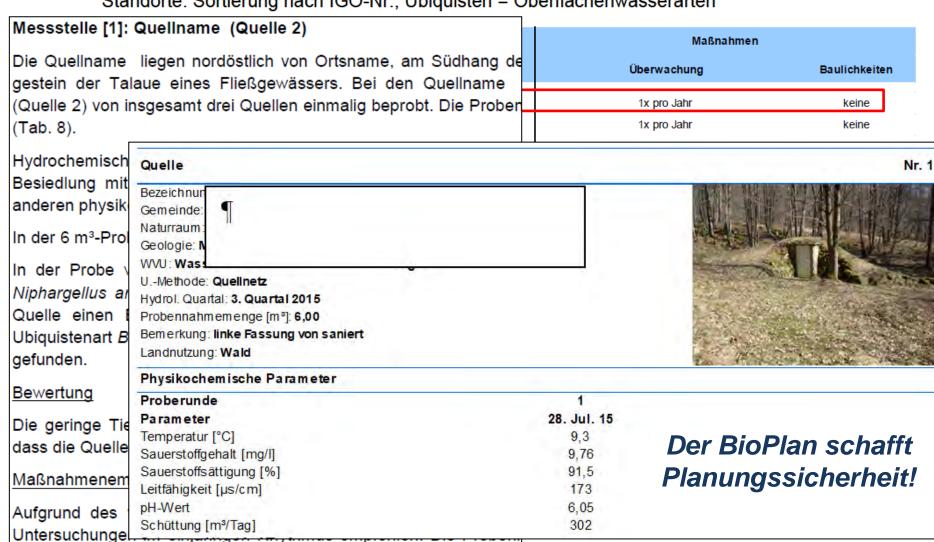
W 271	TrinkwV	Bereiche	Fragestellung	Methode
✓	✓	EZG	OW-Eintrag	Taxonomie
	✓	EZG	Herkunft des Wassers	StygoTracing
√	✓	EZG	EZG-/WSG- Abgrenzung	StygoTracing
√	✓	Gewinnungsanlagen	baul. Mängel, OW-Eintrag	Taxonomie
✓	\checkmark	Aufbereitung/Netz	Systemanalyse Organ. Material	Taxonomie
✓	✓	Aufbereitung/Netz	Systemanalyse Herkunft Tiere/Eintragspfade, Hotspots?	StygoTracing
✓	(√)	gesamte Versorgungsanlagen	Untersuchungen lt. W271	Taxonomie (+ StygoTracing)

Biologischer Rahmen- und Maßnahmenplan (BioPlan)

Entwicklung eines mittel- bis langfristigen Ziel: Konzeptes zur Einführung und Umsetzung der biologischen Überwachung und individueller Maßnahmen

Der BioPlan schafft Planungssicherheit!

Umsetzung


- Beschreibung der Gewinnungsgebiete und Versorgungsanlagen
- Auswertung bestehender & ggf. Erhebung weiterer Daten (Risikoanalyse)
- Strukturierter Monitoring-, Maßnahmen- und Kostenplan

Biologischer Rahmen- und Maßnahmenplan (BioPlan)

Tab. 2a: Überblick über die Tierdichten, Bewertungen und empfohlene Maßnahmen für alle untersuchten Standorte. Sortierung nach IGÖ-Nr., Ubiquisten = Oberflächenwasserarten

